A membrane-based gas absorption (MGA) process was evaluated for the removal of volatile organic compounds (VOCs) based on C6H6/N2 mixture. The absorption of C6H6 from a C6H6/N2 mixture was investigated using a hyd...A membrane-based gas absorption (MGA) process was evaluated for the removal of volatile organic compounds (VOCs) based on C6H6/N2 mixture. The absorption of C6H6 from a C6H6/N2 mixture was investigated using a hydrophobic polypropylene hollow fiber membrane contactor and the aqueous solution of N-formyl morpholine (NFM) as absorbent. The effects of various factors on the overall mass transfer coefficient was investigated. The experimental results showed that the removal efficiency of C6H6 could reach 99.5% in present studied system. A mathematical model based on resistance-in-series concept was presented to predict the value of overall mass transfer coefficient. The average error between the predicted and experimental values is 7.9%. In addition, conventional packed columns for VOCs removal was also evaluated for comparison.展开更多
Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) we...Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.展开更多
Chemical absorption of CO2 into aqueous slurries of Ca(OH)2 was studied in a stirred thermostatic reactor. The influence of solid loading and stirring speed on absorption rate were investigated experimentally, and the...Chemical absorption of CO2 into aqueous slurries of Ca(OH)2 was studied in a stirred thermostatic reactor. The influence of solid loading and stirring speed on absorption rate were investigated experimentally, and the results show that the enhancement factor increases with particle content due to the increase of reactive particles in the gas-liquid interfacial region. The absorption process was controlled by the diffusion of gas molecules in slurry. The influence of stirring intensity on enhancement factor is an integration of gas-liquid and liquid-solid mass transfer variation. A novel prediction model of enhancement factors was proposed with the partition of interface into two various zones, and the prediction values by the presented model are in agreement with the experimental data.展开更多
Fiber Bragg grating(FBG) is used as a wavelength reference device to calibrate the position of gas absorption peak in the intracavity absorption gas sensor(ICAGS) based on erbium-doped fiberring laser.This system can ...Fiber Bragg grating(FBG) is used as a wavelength reference device to calibrate the position of gas absorption peak in the intracavity absorption gas sensor(ICAGS) based on erbium-doped fiberring laser.This system can detect both the reflectance spectrum of FBGs and absorption spectrum of measured gas during a single wavelength sweeping process by linearly varying the driving voltage of optic filter.The voltages corresponding to center wavelength positions of four FBGs in the spectrum are determined through ...展开更多
Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simul...Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simulations of atmospheric gaseous absorption and scattering properties of particles are the essential components of atmospheric radiative transfer models.Atmospheric radiation has important applications in weather,climate,data assimilation,remote sensing,and atmospheric detection studies.In PartⅠ,a comprehensive review of the progress in the field of gas absorption and particle scattering research over the past 30 years with a particular emphasis on the contributions from Chinese scientists is presented.The review of gas absorption includes the construction of absorption databases,the impact of different atmospheric absorption algorithms on radiative calculations,and their applications in weather and climate models and remote sensing.The review on particle scattering starts with the theoretical and computational methods and subsequently explores the optical modeling of aerosols and clouds in remote sensing and atmospheric models.Additionally,the paper discusses potential future research directions in this field.展开更多
The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used a...The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development.展开更多
The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by us...The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by using the correlated k-distribution method (CKD) for the sorting of absorption lines. The overlap absorption of the H2O lines and the H2O continuum (2500-14500 cm-1) are treated by taking the two gases as a single-mixture gas in transmittance calculations. Furthermore, in order to optimize the computation efforts, CO2 and CH4 in the spectral region 2850-5250 cm-1 are taken as a new single-mixture gas as well. For overlap involving other absorption lines in the Fu-Liou spectral bands, the authors adopt the multiplication rule for transmittance computations under which the absorption spectra for two gases are assumed to be uncorrelated. Compared to the line-by-line (LBL) computation, it is shown that the errors in fluxes introduced by these two approaches within the context of the CKD method are small and less than 0.48% for the H2O line and continuum in the 2500-14500 cm-1 solar spectral region, -1% for H2O (line)+H2O (continuum)+CO2+CH4 in the spectral region 2850-5250 cm-1, and -1.5% for H2O (line)+H2O (continuum)+O2 in the 7700-14500 cm-1 spectral region. Analysis also demonstrates that the multiplication rule over a spectral interval as wide as 6800 cm-1 can produce acceptable errors with a maximum percentage value of about 2% in reference to the LBL calculation. Addition of the preceding gases increases the absorption of solar radiation under all sky conditions. For clear sky, the increase in instantaneous solar absorption is about 9%-13% (~12 W m^2) among which the H2O continuum produces the largest increase, while the contributions from O2 and CO2 rank second and third, respectively. In cloudy sky, the addition of absorption amounts to about 6-9 W m-2. The new, improved program with the incorporation of the preceding gases produces a smaller solar absorption in clouds due to the reduced solar flux reaching the cloud top.展开更多
A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. ...A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. Instead of a global grid, the composite overlapping grid is adopted, which simplifies the setup and solution of the three-dimensional model equations. It is found that dispersed particle hold-up, particle size, liquid-solid partition coefficient of transported component, characteristic contact time, and the shortest distance between particles and gas-liquid interface have major influence on absorption enhancement factor. The particle-particle interaction on gas absorption and the lateral diffusion of transported component in liquid film were studied with the multi-particle simulation. The proposed model predicted the experimental data from the literature reasonably well.展开更多
An experimental study on gas absorption into falling liquid film formed on inner surface of vertical tubes has been carried out in order to clarify fundamental characteristics of the gas absorption and enhancement by ...An experimental study on gas absorption into falling liquid film formed on inner surface of vertical tubes has been carried out in order to clarify fundamental characteristics of the gas absorption and enhancement by surface waves. The water supplied into the test tubes is periodically disturbed by fluctuating a silicon tube before the test section with a speaker and the wavy films absorb the oxygen filled in the tubes. Imposing the periodic disturbance enhances the gas absorption and the enhancement has a maximum at around 20-30 Hz, where the gas absorption is 20-30% higher. Mass transfer coefficients obtained with five tubes agree well with those obtained with single tube. Two-dimensional numerical simulations have also been conducted for gas absorption by wavy film and the enhancement mechanism of the gas absorption is discussed.展开更多
In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-l...In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-liquid jet separator was studied,while Ca(OH)_(2),Na_(2)CO_(3),NaOH solution,and water were used as absorbents.This paper investigated the influence of gas cyclone-liquid jet separator’s various process parameters on the removal rate of hydrogen chloride gas.The mechanism of mass transfer in the process of removing hydrogen chloride was discussed,and the effect and feasibility of HCl gas removal in the gas cyclone-liquid jet absorption separator were studied.The results showd that the removal efficiency of hydrogen chloride maintained above 95%,up to 99.9%,and the total mass transfer coefficient reached0.28 mol·m^(-3)·s^(-1)·k Pa^(-1).Under the same conditions,the absorption effect and total mass transfer coefficient of weak basic absorption liquid can be greatly improved by increasing the flow rate of absorption liquid,but the absorption effect and total mass transfer coefficient of strong alkaline absorption liquid can’t be improved obviously.The larger the inlet gas volume,the higher the gas concentration,the lower the absorption efficiency and the lower the total volumetric mass transfer coefficient.展开更多
Spectrophotometry and gas phase molecular absorption spectrometry for determination of nitrite nitrogen in flue gas were compared.KOH absorption solution was used to absorb nitrite nitrogen in flue gas,and the concent...Spectrophotometry and gas phase molecular absorption spectrometry for determination of nitrite nitrogen in flue gas were compared.KOH absorption solution was used to absorb nitrite nitrogen in flue gas,and the concentration of nitrite nitrogen in the absorption solution was determined by spectrophotometry and gas phase molecular absorption spectrometry to obtain the concentration of nitrite nitrogen in flue gas.The experiments show that both methods are accurate and reliable.展开更多
Two methods of the modification of zeolite were employed: framework element modification and surface coating, and the influence of the zeolites before and after modification on the CO2 absorption was investigated. It...Two methods of the modification of zeolite were employed: framework element modification and surface coating, and the influence of the zeolites before and after modification on the CO2 absorption was investigated. It was found that although hydrophobicity of zeolite could be obtained by means of the surficial organic coating in the method of surface coating _mod!fication, partial channel of zeolite would be plugged, as a result, leading to the surface area reducing greatly. Distinctively, the framework element modification method could maintain not only complete lattice structure and adsorption capability of zeolite, but would also obtain a good hydrophobic property. Consequently, significant enhancement on gas absorption by this modified zeolite was achieved and up to a maximum enhancement factor of 2.62. This shows that the solid particles with good enhancement role to gas absorption need not only good adsorptive capability but also certain hydrophobicity. An unsteady heterogeneous model was employed to predict enhancement factor and the calculated results agree well with the experimental data.展开更多
In this work,characterization and kinetics of CO2 absorption in potassium carbonate(K_(2)CO_(3))solution promoted by diethylenetriamine(DETA)were investigated.Kinetics measurements were performed using a stirred cell ...In this work,characterization and kinetics of CO2 absorption in potassium carbonate(K_(2)CO_(3))solution promoted by diethylenetriamine(DETA)were investigated.Kinetics measurements were performed using a stirred cell reactor in the temperature range of 303.15–323.15 K and total concentration up to 2.5 kmol m3.The density,viscosity,physical solubility,CO_(2) diffusivity and absorption rate of CO_(2) in the solution were determined.The reaction kinetics between CO_(2) and K2CO3þDETA solution were examined.Pseudo-first order kinetic constants were also predicted by zwitterion mechanism.It was revealed that the addition of small amounts of DETA to K_(2)CO_(3) results in a significant enhancement in CO_(2) absorption rate.The reaction order and activation energy were found to be 1.6 and 35.6 kJ mol1,respectively.In terms of reaction rate constant,DETA showed a better performance compared to the other promoters such as MEA,EAE,proline,arginine,taurine,histidine and alanine.展开更多
Alkanolamines are widely used in the purification of the sourgas sweetening process. During the sour gas absorption process, CO_2 significantly degrades the amine solvent and creates enormous problems for plant operat...Alkanolamines are widely used in the purification of the sourgas sweetening process. During the sour gas absorption process, CO_2 significantly degrades the amine solvent and creates enormous problems for plant operation. In this work, CO_2 induced degradation of aqueous diethanolamine(DEA) solution was conducted in a 1.25 L jacketed glass reactor that functioned as an absorber and stripper at atmospheric conditions. Pure CO_2 was bubbled through the reactor until the solution became saturated. In this study, the concentrations of DEA used were in the range of concentrations between 2 mol·L^(-1) and 4 mol·L^(-1). In the degradation experiment, six generic cycles were conducted for each run. Each cycle was configured with the absorption and desorption of carbon dioxide at 55 ℃ and 100 ℃, respectively. Samples were collected after a predetermined experimental time and analyzed by ion chromatography(IC) to identify unknown ionic degradation products(DGPs). In the IC analysis, three different columns were used for anion, cation and ion exclusion systems, which are Metrosep A Supp 5150/4.0, Metrosep C Supp 4 150/4.0 and Metrosep Organic Acids, respectively. The major identified DGPs of D01 DEA2 M, D02 DEA3 M, and D03 DEA4 M are nitrite, acetate and ammonium. Phosphate product was found in the degraded amine samples which might be due to the contamination of water or chromatographic system.展开更多
The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisper...The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisperse slurry droplet stream was injected into the evaporation reaction chamber, and the inlet gas components(air, air + SO_(2)) were introduced into the chamber. We applied the magnified digital in-line holography to measure the droplet parameters and calculated the evaporation rate. The effects of temperature, droplet concentration, and SO_(2) concentration on the evaporation rate of Ca(OH)_(2) droplets were discussed. Moreover, the Ca(OH)_(2) droplets under different experimental conditions were sampled,and the droplets were observed and analyzed using an off-line microscope. The evaporation rate of the Ca(OH)_(2) droplet increased at first, and then decreased during the falling process, and remained constant at last. The average evaporation rate of the Ca(OH)_(2) droplets increased significantly with the temperature increasing.展开更多
Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bi...Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing su- perficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.展开更多
A natural gas leakage detector based on scanned-wavelength direct absorption spectroscopy is described. The sensor employs a multi-channel scanned-wavelength direct absorption strategy.It has the potential to simultan...A natural gas leakage detector based on scanned-wavelength direct absorption spectroscopy is described. The sensor employs a multi-channel scanned-wavelength direct absorption strategy.It has the potential to simultaneously monitor methane and hydrogen sulfide in open path environment.Traditionally,scanned-wavelength direct absorption spectroscopy is the technique choice for natural gas leakage applications because of its simplicity,accuracy,and stability.We perform the gas sensor using direct-absorption wavelength scans with isolated features at 1-kHz repetition rate and the center wavelength is stabilized at the center of the 2v_3 band R(3) line of methane(1.65μm) and the(v_1+v_2+v_3) combination band of hydrogen sulfide(1.57μm),respectively.The influence of light intensity fluctuations can be eliminated by using scanned-wavelength direct absorption spectroscopy.Because of the fast wavelength scanning,the sensor has a response time of less than 0.1 s.The sensor can be configured to sense leakages in path-integrated concentrations of,for example,100-ppm·m hydrogen sulfide and 10-ppm·m methane.展开更多
The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium b...The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium based amino acid salt solutions containing potassium lysinate, potassium prolinate, potassium glycinate, and potassium taurate were used in this modeling. Amine salt solution's type, temperature, equilibrium partial pressure of acid gas, the molar concentration of the solution, molecular weight, and the boiling point were considered as inputs to ANN to prognosticate the capacity of amino acid salt solution to absorb acid gas. Regression analysis was employed to assess the performance of the network. Levenberg–Marquardt back-propagation algorithm was used to train the optimal ANN with 5:12:1 architecture. The model findings indicated that the proposed ANN has the capability to predict precisely the absorption of acid gases in various amino acid salt solutions with Mean Square Error(MSE) value of 0.0011, the Average Absolute Relative Deviation(AARD) percent of 5.54%,and the correlation coefficient(R^2) of 0.9828.展开更多
Wavelength modulation technique(WMT) and active intracavity technique(ACIT) are first introduced in this paper,which are used to realize the concentration detection of methane and acetylene respectively.When ACIT is c...Wavelength modulation technique(WMT) and active intracavity technique(ACIT) are first introduced in this paper,which are used to realize the concentration detection of methane and acetylene respectively.When ACIT is combined with wavelength sweep technique(WST),the detection sensitivity of acetylene can be enhanced sharply.When ACIT is combined with WST and WMT,the detection sensitivity of acetylene can be enhanced further.展开更多
We propose a polarization-insensitive design of a hybrid plasmonic waveguide(HPWG)optimized at the 3.392µm wavelength which corresponds to the absorption line of methane gas.The waveguide design is capable of pro...We propose a polarization-insensitive design of a hybrid plasmonic waveguide(HPWG)optimized at the 3.392µm wavelength which corresponds to the absorption line of methane gas.The waveguide design is capable of providing high mode sensitivity(Smode)and evanescent field ratio(EFR)for both transverse electric(TE)and transverse magnetic(TM)hybrid modes.The modal analysis of the waveguide is performed via 2-dimension(2D)and 3-dimension(3D)finite element methods(FEMs).At optimized waveguide parameters,Smode and EFR of 0.94 and 0.704,can be obtained for the TE hybrid mode,respectively,whereas the TM hybrid mode can offer Smode and EFR of 0.86 and 0.67,respectively.The TE and TM hybrid modes power dissipation of~3 dB can be obtained for a 20-µm-long hybrid plasmonic waveguide at the 60%gas concentration.We believe that the highly sensitive waveguide scheme proposed in this work overcomes the limitation of the polarization controlled light and can be utilized in gas sensing applications.展开更多
基金supported by the Environmental Protection Science and Technique Foundation of Jiangsu Province (No. 2005005)
文摘A membrane-based gas absorption (MGA) process was evaluated for the removal of volatile organic compounds (VOCs) based on C6H6/N2 mixture. The absorption of C6H6 from a C6H6/N2 mixture was investigated using a hydrophobic polypropylene hollow fiber membrane contactor and the aqueous solution of N-formyl morpholine (NFM) as absorbent. The effects of various factors on the overall mass transfer coefficient was investigated. The experimental results showed that the removal efficiency of C6H6 could reach 99.5% in present studied system. A mathematical model based on resistance-in-series concept was presented to predict the value of overall mass transfer coefficient. The average error between the predicted and experimental values is 7.9%. In addition, conventional packed columns for VOCs removal was also evaluated for comparison.
基金Supported by the National Natural Science Foundation of China (20776086)
文摘Mass transfer enhancement of gas absorption by adding a dispersed organic phase has been studied in this work. Various dispersed organic phases (heptanol, octanol, isoamyl alcohol, heptane, octane, and isooctane) were tested respectively in the experiment. According to the theoretical model and experimental data, the overall volumetric mass transfer coefficient and enhancement factor were obtained under different dispersed organic phase volume fraction and stirring speed. The experimental results indicate that gas-liquid mass transfer is enhanced at different level by adding a dispersed organic phase. The best performance of enhancement were achieved with the dispersed organic phase volumetric fraction of 5% and under an intermediate stirring speed of 670 r·min^-1. Among the organic phases tested in the experiment, alcohols show better performance, which gave 20% higher enhance-ment of overall volumetric mass transfer coefficient than adding alkanes.
基金Supported by National Natural Science Foundation of China (No20176036)
文摘Chemical absorption of CO2 into aqueous slurries of Ca(OH)2 was studied in a stirred thermostatic reactor. The influence of solid loading and stirring speed on absorption rate were investigated experimentally, and the results show that the enhancement factor increases with particle content due to the increase of reactive particles in the gas-liquid interfacial region. The absorption process was controlled by the diffusion of gas molecules in slurry. The influence of stirring intensity on enhancement factor is an integration of gas-liquid and liquid-solid mass transfer variation. A novel prediction model of enhancement factors was proposed with the partition of interface into two various zones, and the prediction values by the presented model are in agreement with the experimental data.
基金Supported by Major State Basic Research Program of China("973"Program,No.2010CB327800)Research Fund for Doctoral Program of Higher Education of China(No.20090032110053)New Teacher Research Fund for Doctoral Program of Higher Education of China (No.200800561022)
文摘Fiber Bragg grating(FBG) is used as a wavelength reference device to calibrate the position of gas absorption peak in the intracavity absorption gas sensor(ICAGS) based on erbium-doped fiberring laser.This system can detect both the reflectance spectrum of FBGs and absorption spectrum of measured gas during a single wavelength sweeping process by linearly varying the driving voltage of optic filter.The voltages corresponding to center wavelength positions of four FBGs in the spectrum are determined through ...
基金Supported by the National Natural Science Foundation of China(42275039 and 42022038)。
文摘Atmospheric radiation is a major branch of atmospheric physics that encompasses the fundamental theories of atmospheric absorption,particle scattering(aerosols and clouds),and radiative transfer.Specifically,the simulations of atmospheric gaseous absorption and scattering properties of particles are the essential components of atmospheric radiative transfer models.Atmospheric radiation has important applications in weather,climate,data assimilation,remote sensing,and atmospheric detection studies.In PartⅠ,a comprehensive review of the progress in the field of gas absorption and particle scattering research over the past 30 years with a particular emphasis on the contributions from Chinese scientists is presented.The review of gas absorption includes the construction of absorption databases,the impact of different atmospheric absorption algorithms on radiative calculations,and their applications in weather and climate models and remote sensing.The review on particle scattering starts with the theoretical and computational methods and subsequently explores the optical modeling of aerosols and clouds in remote sensing and atmospheric models.Additionally,the paper discusses potential future research directions in this field.
文摘The transition to low carbon energy systems poses challenges in terms of energy efficiency.In building refur-bishment projects,efficient technologies such as smart controls and heat pumps are increasingly being used as a substitute for conventional technologies with the aim of reducing carbon emissions and determining operational energy and cost savings,together with other benefits.Measured building performance,however,often reveals a significant gap between the predicted energy use(design stage)and actual energy use(operation stage).For this reason,lean and interpretable digital twins are needed for building energy monitoring aimed at persistence of savings and continuous performance improvement.In this research,interpretable regression models are built with data at multiple temporal resolutions(monthly,daily and hourly)and seamlessly integrated with the goal of verifying the performance improvements due to Smart thermostatic radiator valves(TRVs)and gas absorption heat pumps(GAHPs)as well as giving insights on the performance of the building as a whole.Further,as part of modelling research,time of week and temperature(TOWT)approach is reformulated and benchmarked against its original implementation.The case study chosen is Hale Court sheltered housing,located in the city of Portsmouth(UK).This building has been used for the field-testing of innovative technologies such as TRVs and GAHPs within the EU Horizon 2020 project THERMOSS.The results obtained are used to illustrate possible extensions of the use of energy signature modelling,highlighting implications for energy management and innovative building technologies development.
基金The research was financially supported by the National Natural Science Foundation of China(Grant No.40233027)supported by the Key Knowledge Innovation Project of Chinese Academy of Sciences(Grant No:KZCX3-SW-226)During the course of this study,Zhang Feng was a scientific visitor in the De partment of Atmospheric Sciences at UCLA supported in part by NSF(National Science Fundation)grants ATM-9907924 and ATM-0331550.
文摘The absorption properties of the water vapor continuum and a number of weak bands for H2O, O2, CO2, CO, N2O, CH4, and O3 in the solar spectrum are incorporated into the Fu-Liou radiation parameterization program by using the correlated k-distribution method (CKD) for the sorting of absorption lines. The overlap absorption of the H2O lines and the H2O continuum (2500-14500 cm-1) are treated by taking the two gases as a single-mixture gas in transmittance calculations. Furthermore, in order to optimize the computation efforts, CO2 and CH4 in the spectral region 2850-5250 cm-1 are taken as a new single-mixture gas as well. For overlap involving other absorption lines in the Fu-Liou spectral bands, the authors adopt the multiplication rule for transmittance computations under which the absorption spectra for two gases are assumed to be uncorrelated. Compared to the line-by-line (LBL) computation, it is shown that the errors in fluxes introduced by these two approaches within the context of the CKD method are small and less than 0.48% for the H2O line and continuum in the 2500-14500 cm-1 solar spectral region, -1% for H2O (line)+H2O (continuum)+CO2+CH4 in the spectral region 2850-5250 cm-1, and -1.5% for H2O (line)+H2O (continuum)+O2 in the 7700-14500 cm-1 spectral region. Analysis also demonstrates that the multiplication rule over a spectral interval as wide as 6800 cm-1 can produce acceptable errors with a maximum percentage value of about 2% in reference to the LBL calculation. Addition of the preceding gases increases the absorption of solar radiation under all sky conditions. For clear sky, the increase in instantaneous solar absorption is about 9%-13% (~12 W m^2) among which the H2O continuum produces the largest increase, while the contributions from O2 and CO2 rank second and third, respectively. In cloudy sky, the addition of absorption amounts to about 6-9 W m-2. The new, improved program with the incorporation of the preceding gases produces a smaller solar absorption in clouds due to the reduced solar flux reaching the cloud top.
基金Supported by the National Natural Science Foundation of China (No. 20136010).
文摘A three-dimensional heterogeneous mass transfer model was proposed to investigate the enhancement of dispersed particles on gas absorption. The strategy to calculate local and overall enhancement factors is proposed. Instead of a global grid, the composite overlapping grid is adopted, which simplifies the setup and solution of the three-dimensional model equations. It is found that dispersed particle hold-up, particle size, liquid-solid partition coefficient of transported component, characteristic contact time, and the shortest distance between particles and gas-liquid interface have major influence on absorption enhancement factor. The particle-particle interaction on gas absorption and the lateral diffusion of transported component in liquid film were studied with the multi-particle simulation. The proposed model predicted the experimental data from the literature reasonably well.
基金This work supported by Japan Society for the Promotion of Science (Project No. 13650232).
文摘An experimental study on gas absorption into falling liquid film formed on inner surface of vertical tubes has been carried out in order to clarify fundamental characteristics of the gas absorption and enhancement by surface waves. The water supplied into the test tubes is periodically disturbed by fluctuating a silicon tube before the test section with a speaker and the wavy films absorb the oxygen filled in the tubes. Imposing the periodic disturbance enhances the gas absorption and the enhancement has a maximum at around 20-30 Hz, where the gas absorption is 20-30% higher. Mass transfer coefficients obtained with five tubes agree well with those obtained with single tube. Two-dimensional numerical simulations have also been conducted for gas absorption by wavy film and the enhancement mechanism of the gas absorption is discussed.
基金the sponsorship of National Natural Science Foundation of China(21878099)Science and Technology Commission of Shanghai Municipality(19DZ1208000)。
文摘In the titanium dioxide industry,there is a lack of a low-cost and high-efficiency treatment method for chloride containing tail gas.In this paper,the removal of HCl from the titanium dioxide industry by gas cyclone-liquid jet separator was studied,while Ca(OH)_(2),Na_(2)CO_(3),NaOH solution,and water were used as absorbents.This paper investigated the influence of gas cyclone-liquid jet separator’s various process parameters on the removal rate of hydrogen chloride gas.The mechanism of mass transfer in the process of removing hydrogen chloride was discussed,and the effect and feasibility of HCl gas removal in the gas cyclone-liquid jet absorption separator were studied.The results showd that the removal efficiency of hydrogen chloride maintained above 95%,up to 99.9%,and the total mass transfer coefficient reached0.28 mol·m^(-3)·s^(-1)·k Pa^(-1).Under the same conditions,the absorption effect and total mass transfer coefficient of weak basic absorption liquid can be greatly improved by increasing the flow rate of absorption liquid,but the absorption effect and total mass transfer coefficient of strong alkaline absorption liquid can’t be improved obviously.The larger the inlet gas volume,the higher the gas concentration,the lower the absorption efficiency and the lower the total volumetric mass transfer coefficient.
文摘Spectrophotometry and gas phase molecular absorption spectrometry for determination of nitrite nitrogen in flue gas were compared.KOH absorption solution was used to absorb nitrite nitrogen in flue gas,and the concentration of nitrite nitrogen in the absorption solution was determined by spectrophotometry and gas phase molecular absorption spectrometry to obtain the concentration of nitrite nitrogen in flue gas.The experiments show that both methods are accurate and reliable.
基金Supported by the National Natural Science Foundation of China (20176036).
文摘Two methods of the modification of zeolite were employed: framework element modification and surface coating, and the influence of the zeolites before and after modification on the CO2 absorption was investigated. It was found that although hydrophobicity of zeolite could be obtained by means of the surficial organic coating in the method of surface coating _mod!fication, partial channel of zeolite would be plugged, as a result, leading to the surface area reducing greatly. Distinctively, the framework element modification method could maintain not only complete lattice structure and adsorption capability of zeolite, but would also obtain a good hydrophobic property. Consequently, significant enhancement on gas absorption by this modified zeolite was achieved and up to a maximum enhancement factor of 2.62. This shows that the solid particles with good enhancement role to gas absorption need not only good adsorptive capability but also certain hydrophobicity. An unsteady heterogeneous model was employed to predict enhancement factor and the calculated results agree well with the experimental data.
文摘In this work,characterization and kinetics of CO2 absorption in potassium carbonate(K_(2)CO_(3))solution promoted by diethylenetriamine(DETA)were investigated.Kinetics measurements were performed using a stirred cell reactor in the temperature range of 303.15–323.15 K and total concentration up to 2.5 kmol m3.The density,viscosity,physical solubility,CO_(2) diffusivity and absorption rate of CO_(2) in the solution were determined.The reaction kinetics between CO_(2) and K2CO3þDETA solution were examined.Pseudo-first order kinetic constants were also predicted by zwitterion mechanism.It was revealed that the addition of small amounts of DETA to K_(2)CO_(3) results in a significant enhancement in CO_(2) absorption rate.The reaction order and activation energy were found to be 1.6 and 35.6 kJ mol1,respectively.In terms of reaction rate constant,DETA showed a better performance compared to the other promoters such as MEA,EAE,proline,arginine,taurine,histidine and alanine.
基金the Ministry of Science,Technology and Innovation,Malaysia(MOSTI),for funding the project:RG003/09AET as well as the University of Malaya for allowing full access to several key laboratories to perform experimental work
文摘Alkanolamines are widely used in the purification of the sourgas sweetening process. During the sour gas absorption process, CO_2 significantly degrades the amine solvent and creates enormous problems for plant operation. In this work, CO_2 induced degradation of aqueous diethanolamine(DEA) solution was conducted in a 1.25 L jacketed glass reactor that functioned as an absorber and stripper at atmospheric conditions. Pure CO_2 was bubbled through the reactor until the solution became saturated. In this study, the concentrations of DEA used were in the range of concentrations between 2 mol·L^(-1) and 4 mol·L^(-1). In the degradation experiment, six generic cycles were conducted for each run. Each cycle was configured with the absorption and desorption of carbon dioxide at 55 ℃ and 100 ℃, respectively. Samples were collected after a predetermined experimental time and analyzed by ion chromatography(IC) to identify unknown ionic degradation products(DGPs). In the IC analysis, three different columns were used for anion, cation and ion exclusion systems, which are Metrosep A Supp 5150/4.0, Metrosep C Supp 4 150/4.0 and Metrosep Organic Acids, respectively. The major identified DGPs of D01 DEA2 M, D02 DEA3 M, and D03 DEA4 M are nitrite, acetate and ammonium. Phosphate product was found in the degraded amine samples which might be due to the contamination of water or chromatographic system.
基金supported by the National Natural Science Fund for Distinguished Young Scholars (No. 51825605)。
文摘The experiments were conducted to focus on the desulfurization and evaporation characteristics of lime slurry droplets at 298-383 K. We designed an evaporation-reaction chamber with quartz glass windows.The monodisperse slurry droplet stream was injected into the evaporation reaction chamber, and the inlet gas components(air, air + SO_(2)) were introduced into the chamber. We applied the magnified digital in-line holography to measure the droplet parameters and calculated the evaporation rate. The effects of temperature, droplet concentration, and SO_(2) concentration on the evaporation rate of Ca(OH)_(2) droplets were discussed. Moreover, the Ca(OH)_(2) droplets under different experimental conditions were sampled,and the droplets were observed and analyzed using an off-line microscope. The evaporation rate of the Ca(OH)_(2) droplet increased at first, and then decreased during the falling process, and remained constant at last. The average evaporation rate of the Ca(OH)_(2) droplets increased significantly with the temperature increasing.
文摘Danckwert’s method was used to determine the specific interfacial area, a, and the individual mass transfer coefficient, kL, during absorption of CO2 in a bubble column with an anionic surfactant in the carbonate-bicarbonate buffer solution and NaAsO2 as catalyst, the presence of which decreases the specific interfacial area and the individual mass transfer coefficient. The specific interfacial area and the individual mass transfer coefficient increase with increasing su- perficial gas velocity. The specific interfacial area decreases whereas the individual mass transfer coefficient increases with increasing temperature. The results of experiments were used to determine the dependence of a, kL, and kLa on the surface tension, the temperature of the absorption phase, and the superficial velocity of the gas. The calculated results from the correlation were found to be within 10% deviation from the actual experimental results.
基金supported by the importantly directional project of Knowledge Innovation Program of Chinese Academy of Sciences(No.KGCX2-YW-121-1)the National Defense Pre-Research Fund of Chinese Academy of Sciences(No.CXJJ-09-M38).
文摘A natural gas leakage detector based on scanned-wavelength direct absorption spectroscopy is described. The sensor employs a multi-channel scanned-wavelength direct absorption strategy.It has the potential to simultaneously monitor methane and hydrogen sulfide in open path environment.Traditionally,scanned-wavelength direct absorption spectroscopy is the technique choice for natural gas leakage applications because of its simplicity,accuracy,and stability.We perform the gas sensor using direct-absorption wavelength scans with isolated features at 1-kHz repetition rate and the center wavelength is stabilized at the center of the 2v_3 band R(3) line of methane(1.65μm) and the(v_1+v_2+v_3) combination band of hydrogen sulfide(1.57μm),respectively.The influence of light intensity fluctuations can be eliminated by using scanned-wavelength direct absorption spectroscopy.Because of the fast wavelength scanning,the sensor has a response time of less than 0.1 s.The sensor can be configured to sense leakages in path-integrated concentrations of,for example,100-ppm·m hydrogen sulfide and 10-ppm·m methane.
文摘The acid gas absorption in four potassium based amino acid salt solutions was predicted using artificial neural network(ANN). Two hundred fifty-five experimental data points for CO_2 absorption in the four potassium based amino acid salt solutions containing potassium lysinate, potassium prolinate, potassium glycinate, and potassium taurate were used in this modeling. Amine salt solution's type, temperature, equilibrium partial pressure of acid gas, the molar concentration of the solution, molecular weight, and the boiling point were considered as inputs to ANN to prognosticate the capacity of amino acid salt solution to absorb acid gas. Regression analysis was employed to assess the performance of the network. Levenberg–Marquardt back-propagation algorithm was used to train the optimal ANN with 5:12:1 architecture. The model findings indicated that the proposed ANN has the capability to predict precisely the absorption of acid gases in various amino acid salt solutions with Mean Square Error(MSE) value of 0.0011, the Average Absolute Relative Deviation(AARD) percent of 5.54%,and the correlation coefficient(R^2) of 0.9828.
基金supported by the National Natural Science foundation of China (contact No. 60577013)the New Century Support Program for Talented Young Teachers in Universities,Ministry of Education of China
文摘Wavelength modulation technique(WMT) and active intracavity technique(ACIT) are first introduced in this paper,which are used to realize the concentration detection of methane and acetylene respectively.When ACIT is combined with wavelength sweep technique(WST),the detection sensitivity of acetylene can be enhanced sharply.When ACIT is combined with WST and WMT,the detection sensitivity of acetylene can be enhanced further.
基金This work was financially supported by the Russian Foundation for Basic Research(Grant No.16-29-09528_ofi_m)for numerical calculationsby the Ministry of Science and Higher Education within the State assignment FSRC《Crystallography and Photonics》RAS(Grant No.007-GZ/Ch3363/26)for theoretical results.
文摘We propose a polarization-insensitive design of a hybrid plasmonic waveguide(HPWG)optimized at the 3.392µm wavelength which corresponds to the absorption line of methane gas.The waveguide design is capable of providing high mode sensitivity(Smode)and evanescent field ratio(EFR)for both transverse electric(TE)and transverse magnetic(TM)hybrid modes.The modal analysis of the waveguide is performed via 2-dimension(2D)and 3-dimension(3D)finite element methods(FEMs).At optimized waveguide parameters,Smode and EFR of 0.94 and 0.704,can be obtained for the TE hybrid mode,respectively,whereas the TM hybrid mode can offer Smode and EFR of 0.86 and 0.67,respectively.The TE and TM hybrid modes power dissipation of~3 dB can be obtained for a 20-µm-long hybrid plasmonic waveguide at the 60%gas concentration.We believe that the highly sensitive waveguide scheme proposed in this work overcomes the limitation of the polarization controlled light and can be utilized in gas sensing applications.