In order to meet the increasingly stringent requirements for nitrogen oxides(NOx)emissions from gas boilers,flue gas recirculation(FGR)technology is commonly used to achieve ultra-low NOx emissions.However,under some ...In order to meet the increasingly stringent requirements for nitrogen oxides(NOx)emissions from gas boilers,flue gas recirculation(FGR)technology is commonly used to achieve ultra-low NOx emissions.However,under some ultra-low NOx combustion conditions with FGR,a surge phenomenon occurs in the boiler,which causes a flameout and should be avoided.In this study,the diffusion combustion surge of gas boiler with a rated power of 350 k W and equipped with FGR device was investigated.Pressure characteristic analysis results of the initial process of combustion surge showed that the high-frequency component of pressure is closely related to combustion stability and its change can provide reference for the occurrence of surge.Besides,the initial process of surge was analyzed by wavelet packet entropy method.Results indicated that the wavelet packet entropy of pressure signals could effectively reflect the stability of combustion in the furnace,and it could also be used to study the occurrence of surge.展开更多
This paper is focused on description of cool production in using WHR (Waste Heat Technology) Technology-a new method of centralized production of heat by using the waste heat from generated exhaust gas, which has be...This paper is focused on description of cool production in using WHR (Waste Heat Technology) Technology-a new method of centralized production of heat by using the waste heat from generated exhaust gas, which has been in 2009 developed and operated by companies HELORO s.r.o, and COMTHERM s.r.o.展开更多
Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial l...Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial low power heat into“renewable heat”useful to enhance the efficiency of the system is essential and actual innovation in the field of worldwide environmental protection.By introducing and defining the terminology of low-potential,“renewable”,“green heat”has created a new,parallel category of research in the energy sector.Traditional co-generation systems produce heat for space heating and hot water and generate electricity.Moving to tri-generation allows growing demand for air conditioning for homes,offices and commercial spaces such as server rooms and switchboards to be met simultaneously or on a seasonal basis.Tri-generation,or combined cooling,heat and power,is the process by which some of the heat produced by a co-generation plant is used to generate chilled water for air conditioning or refrigeration.Usually an absorption chiller is linked to the plant to provide this functionality.The technical solution is related to the new efficient manner and system of simultaneous generation of heat/cold from multiple heat sources,which has not yet been known,but in practice required.New system also enables advantageous utilization of solar power in supporting of the cooling output.The innovative system can be operated also within the existing central heating distribution systems.展开更多
基金supported by the National Natural Science Foundation of China(51976140)the National Key Research and Development Program of China(2017YFF0209801)。
文摘In order to meet the increasingly stringent requirements for nitrogen oxides(NOx)emissions from gas boilers,flue gas recirculation(FGR)technology is commonly used to achieve ultra-low NOx emissions.However,under some ultra-low NOx combustion conditions with FGR,a surge phenomenon occurs in the boiler,which causes a flameout and should be avoided.In this study,the diffusion combustion surge of gas boiler with a rated power of 350 k W and equipped with FGR device was investigated.Pressure characteristic analysis results of the initial process of combustion surge showed that the high-frequency component of pressure is closely related to combustion stability and its change can provide reference for the occurrence of surge.Besides,the initial process of surge was analyzed by wavelet packet entropy method.Results indicated that the wavelet packet entropy of pressure signals could effectively reflect the stability of combustion in the furnace,and it could also be used to study the occurrence of surge.
文摘This paper is focused on description of cool production in using WHR (Waste Heat Technology) Technology-a new method of centralized production of heat by using the waste heat from generated exhaust gas, which has been in 2009 developed and operated by companies HELORO s.r.o, and COMTHERM s.r.o.
文摘Introduction:The current worldwide electric power&heat&cool production has a negative impact on the environment by emissions and enormous leaks of low-potential waste heat.Transformation of unused industrial low power heat into“renewable heat”useful to enhance the efficiency of the system is essential and actual innovation in the field of worldwide environmental protection.By introducing and defining the terminology of low-potential,“renewable”,“green heat”has created a new,parallel category of research in the energy sector.Traditional co-generation systems produce heat for space heating and hot water and generate electricity.Moving to tri-generation allows growing demand for air conditioning for homes,offices and commercial spaces such as server rooms and switchboards to be met simultaneously or on a seasonal basis.Tri-generation,or combined cooling,heat and power,is the process by which some of the heat produced by a co-generation plant is used to generate chilled water for air conditioning or refrigeration.Usually an absorption chiller is linked to the plant to provide this functionality.The technical solution is related to the new efficient manner and system of simultaneous generation of heat/cold from multiple heat sources,which has not yet been known,but in practice required.New system also enables advantageous utilization of solar power in supporting of the cooling output.The innovative system can be operated also within the existing central heating distribution systems.