Soil moisture is a major limiting factor for plant growth on shell ridge islands in the Yellow River Delta. However, it is difficult to carry out situ experiment to study dominant plant photosynthesis physiological on...Soil moisture is a major limiting factor for plant growth on shell ridge islands in the Yellow River Delta. However, it is difficult to carry out situ experiment to study dominant plant photosynthesis physiological on the shell ridge islands under extreme soil water stress. To evaluate the adaptability of plants to light and moisture variations under extreme soil moisture conditions present on these islands, we measured photosynthetic gas exchange process, chlorophyll fluorescence, and stem sap flow variables for 3-year-old trees of Tamarix chinensis Lour, a restoration species on these islands, subjected to three types of soil water levels: waterlogging stress (WS), alternating dry-wet (WD), and severe drought stress (SS) to inform decisions on its planting and management on shell ridge islands. Gas exchange, chlorophyll fluorescence, and stem sap flow in T. chinensis were then measured. Net photosynthetic rate (PN), transpiration rate (E), and water use efficiency (WUE) were similar under WS and alternating dry-wet conditions, but their mean E and WUE differed significantly (P 〈 0.05). Under SS, the PN, E and WErE of T. chinensis leaves varied slightly, and mean PN, E and WUE were all low. Apparent quantum efficiency (AQY), light compensation point (LCP), light saturation point (LSP), and maximum net photosynthetic rate (PNmax) of leaves were not significantly different (P 〉 0.05) under WS and dry-wet conditions; however, under extreme drought stress, compared with the dry-wet conditions, LCP was higher, Lsp was lower, and AQy and PNmax were both at the lowest level. Therefore, drought stress weakened light adaptability of leaves, and the efficiency of light transformation was poorer. (3) Maximum photochemical efficiency (Fv/Fm) and the actual photochemical efficiency (ΦPSII) were similar under waterlogged stress and dry-wet conditions, indicating a similar healthy photosynthetic apparatus and photosynthetic reaction cen- ter activity, respectively. Under SS, Fv/Fm was 0.631, and the coefficient of non-photochemical quenching (NpQ) was 0.814, which indicated that while the photosynthetic mechanism was damaged, the absorbed light energy was mainly dissipated in the form of heat, and the potential photosynthetic productivity was significantly reduced. The daily cumulants of sap flow of T. chinensis under drywet alternation and severe drought stress were. 22.25 and 63.97% higher, respectively, than under waterlogging stress. Daily changes in sap flow velocity for T. chinensis differed under the three soil water levels. Stem sap flow was weak at night under severe drought stress. Under drywet alternation, daytime average stem sap flow velocity was the highest, and night stem flow accounted for 10.26% of the day cumulants, while under waterlogged stress, the average nightly stem flow velocity was the highest, accounting for 31.82% of the day cumulants. These results provide important information for regional vegetation restoration and ecological reconstruction.展开更多
To explore the critical relationships of photosynthetic efficiency and stem sap flow to soil moisture,two-year-old poplar saplings were selected and a packaged stem sap flow gauge,based on the stem-heat balance method...To explore the critical relationships of photosynthetic efficiency and stem sap flow to soil moisture,two-year-old poplar saplings were selected and a packaged stem sap flow gauge,based on the stem-heat balance method,and a CIRAS-2 portable photosynthesis system were used.The results show that photosynthetic rates(P_(n)),transpiration rates(T_(r)),instantaneous water use efficiency(WUE)and the stem sap flow increased initially and then decreased with decreasing soil water,but their critical values were different.The turning point of relative soil water content(W_(r))from stomatal limitation to nonstomatal limitation of P_(n)was 42%,and the water compensation point of P_(n)was 13%.Water saturation points of P_(n)and T_(r)were 64%and 56%,respectively,and the WUE was 71%.With increasing soil water,the apparent quantum yield(AQY),light saturation point(LSP)and maximum net photosynthetic rate(P_(n)max)increased first and then decreased,while the light compensation point(LCP)decreased first and then increased.When W_(r)was 64%,LCP reached a lower value of 30.7µmol m^(-2)s^(-1),and AQY a higher value of 0.044,indicating that poplar had a strong ability to utilize weak light.When W_(r)was 74%,LSP reached its highest point at 1138.3µmol·m^(-2)s^(-1),indicating that poplar had the widest light ecological amplitude and the highest light utilization efficiency.Stem sap flow and daily sap flow reached the highest value(1679.7 g d^(-1))at W_(r)values of 56%and 64%,respectively,and then declined with increasing or decreasing W_(r),indicating that soil moisture significantly affected the transpiration water-consumption of poplar.Soil water was divided into six threshold grades by critical values to maintain photosynthetic efficiency at different levels,and a W_(r)of 64-71%was classified to be at the level of high productivity and high efficiency.In this range,poplar had high photosynthetic capacity and efficient physiological characteristics for water consumption.The saplings had characteristics of water tolerance and were not drought resistant.Full attention should be given to the soil water environment in the Yellow River Delta when planting Populus.展开更多
Background:The photosynthetic parameters of cotton plants may be modified by the timing of film removal during their growing period.This study was undertaken during 2015-2017 in Xinjiang,China,to determine to what ext...Background:The photosynthetic parameters of cotton plants may be modified by the timing of film removal during their growing period.This study was undertaken during 2015-2017 in Xinjiang,China,to determine to what extent the film mulching removal time,1 and 10 days before the first irrigation and 1 day before the second irrigation after seedling emergence,influenced cotton's photosynthetic characteristics.The control group(CK)was film-mulched throughout the growth stages.Results:The results suggested the following:(1)Removing mulching-film within 50 days since seedling emergence had adverse effects on soil temperature and moisture.(2)Film-removal before the first or second irrigation after emergence improved the net photosynthetic rate in cotton's later flowering stage and its transpiration rate in mid and later flowed ng stages while enhancing the actual electron transport rate(ETR)and maximum electron transfer rate(ETRmax)between cotton photosystems I and II.(3)Film-removal treatment also increased cotton plants'toleranee to high irradiation after emergence,the trend was more pronounced in the early flowering stage in wetter years.(4)Leaf area index(LAI)of cotton was reduced in the film-removal treatment for which the least accumulation of dry matter occurred in a drought year(i.e.,2015).(5)Film removal caused a yield decrease in the dry year(2015),and the earlier the film was removed,the more seriously the yield decreased.Removing mulching film before the second irrigation could increase the yield of XLZ42 in the rainy year(2016)and the normal rainfall year(2017).Early film removal can in crease the yield of XLZ45 in the rainy year(2016).Conclusions:Collectively,our stud/s experimental results indicate that applying mulch film removal at an appropriate,targeted time after seedling emerge nee had no adverse effects on soil moisture and temperature,and improved the photosy nthetic performance of cotton,thus in creased cotton yield and fiber quality,but no significant difference was reached.展开更多
基金supported by the National Natural Science Foundation of China(No.31370702)the Key Project of Natural Science Foundation of Shandong Province(No.ZR2015JL014)+2 种基金the Key Research and Development Project of Shandong Province(No.2015GNC111022)Science and Technology Plan of Universities in Shandong Province(No.J13LC03)Natural Science Foundation of Shandong Province(No.ZR2015CL044)
文摘Soil moisture is a major limiting factor for plant growth on shell ridge islands in the Yellow River Delta. However, it is difficult to carry out situ experiment to study dominant plant photosynthesis physiological on the shell ridge islands under extreme soil water stress. To evaluate the adaptability of plants to light and moisture variations under extreme soil moisture conditions present on these islands, we measured photosynthetic gas exchange process, chlorophyll fluorescence, and stem sap flow variables for 3-year-old trees of Tamarix chinensis Lour, a restoration species on these islands, subjected to three types of soil water levels: waterlogging stress (WS), alternating dry-wet (WD), and severe drought stress (SS) to inform decisions on its planting and management on shell ridge islands. Gas exchange, chlorophyll fluorescence, and stem sap flow in T. chinensis were then measured. Net photosynthetic rate (PN), transpiration rate (E), and water use efficiency (WUE) were similar under WS and alternating dry-wet conditions, but their mean E and WUE differed significantly (P 〈 0.05). Under SS, the PN, E and WErE of T. chinensis leaves varied slightly, and mean PN, E and WUE were all low. Apparent quantum efficiency (AQY), light compensation point (LCP), light saturation point (LSP), and maximum net photosynthetic rate (PNmax) of leaves were not significantly different (P 〉 0.05) under WS and dry-wet conditions; however, under extreme drought stress, compared with the dry-wet conditions, LCP was higher, Lsp was lower, and AQy and PNmax were both at the lowest level. Therefore, drought stress weakened light adaptability of leaves, and the efficiency of light transformation was poorer. (3) Maximum photochemical efficiency (Fv/Fm) and the actual photochemical efficiency (ΦPSII) were similar under waterlogged stress and dry-wet conditions, indicating a similar healthy photosynthetic apparatus and photosynthetic reaction cen- ter activity, respectively. Under SS, Fv/Fm was 0.631, and the coefficient of non-photochemical quenching (NpQ) was 0.814, which indicated that while the photosynthetic mechanism was damaged, the absorbed light energy was mainly dissipated in the form of heat, and the potential photosynthetic productivity was significantly reduced. The daily cumulants of sap flow of T. chinensis under drywet alternation and severe drought stress were. 22.25 and 63.97% higher, respectively, than under waterlogging stress. Daily changes in sap flow velocity for T. chinensis differed under the three soil water levels. Stem sap flow was weak at night under severe drought stress. Under drywet alternation, daytime average stem sap flow velocity was the highest, and night stem flow accounted for 10.26% of the day cumulants, while under waterlogged stress, the average nightly stem flow velocity was the highest, accounting for 31.82% of the day cumulants. These results provide important information for regional vegetation restoration and ecological reconstruction.
基金This study was supported by the National Natural Science Foundation of China(No.31770761,No.31870379)the Forestry Science and Technology Innovation Project of Shandong Province(No.2019LY006)+1 种基金the Science and Technology Projects of Shandong Province(No.2017CXGC0316)the Taishan Scholars Program of Shandong Province,P.R.China(No.TSQN201909152).
文摘To explore the critical relationships of photosynthetic efficiency and stem sap flow to soil moisture,two-year-old poplar saplings were selected and a packaged stem sap flow gauge,based on the stem-heat balance method,and a CIRAS-2 portable photosynthesis system were used.The results show that photosynthetic rates(P_(n)),transpiration rates(T_(r)),instantaneous water use efficiency(WUE)and the stem sap flow increased initially and then decreased with decreasing soil water,but their critical values were different.The turning point of relative soil water content(W_(r))from stomatal limitation to nonstomatal limitation of P_(n)was 42%,and the water compensation point of P_(n)was 13%.Water saturation points of P_(n)and T_(r)were 64%and 56%,respectively,and the WUE was 71%.With increasing soil water,the apparent quantum yield(AQY),light saturation point(LSP)and maximum net photosynthetic rate(P_(n)max)increased first and then decreased,while the light compensation point(LCP)decreased first and then increased.When W_(r)was 64%,LCP reached a lower value of 30.7µmol m^(-2)s^(-1),and AQY a higher value of 0.044,indicating that poplar had a strong ability to utilize weak light.When W_(r)was 74%,LSP reached its highest point at 1138.3µmol·m^(-2)s^(-1),indicating that poplar had the widest light ecological amplitude and the highest light utilization efficiency.Stem sap flow and daily sap flow reached the highest value(1679.7 g d^(-1))at W_(r)values of 56%and 64%,respectively,and then declined with increasing or decreasing W_(r),indicating that soil moisture significantly affected the transpiration water-consumption of poplar.Soil water was divided into six threshold grades by critical values to maintain photosynthetic efficiency at different levels,and a W_(r)of 64-71%was classified to be at the level of high productivity and high efficiency.In this range,poplar had high photosynthetic capacity and efficient physiological characteristics for water consumption.The saplings had characteristics of water tolerance and were not drought resistant.Full attention should be given to the soil water environment in the Yellow River Delta when planting Populus.
基金the special fund for scientific research into non-profit industries(agriculture,grant no.201503120).
文摘Background:The photosynthetic parameters of cotton plants may be modified by the timing of film removal during their growing period.This study was undertaken during 2015-2017 in Xinjiang,China,to determine to what extent the film mulching removal time,1 and 10 days before the first irrigation and 1 day before the second irrigation after seedling emergence,influenced cotton's photosynthetic characteristics.The control group(CK)was film-mulched throughout the growth stages.Results:The results suggested the following:(1)Removing mulching-film within 50 days since seedling emergence had adverse effects on soil temperature and moisture.(2)Film-removal before the first or second irrigation after emergence improved the net photosynthetic rate in cotton's later flowering stage and its transpiration rate in mid and later flowed ng stages while enhancing the actual electron transport rate(ETR)and maximum electron transfer rate(ETRmax)between cotton photosystems I and II.(3)Film-removal treatment also increased cotton plants'toleranee to high irradiation after emergence,the trend was more pronounced in the early flowering stage in wetter years.(4)Leaf area index(LAI)of cotton was reduced in the film-removal treatment for which the least accumulation of dry matter occurred in a drought year(i.e.,2015).(5)Film removal caused a yield decrease in the dry year(2015),and the earlier the film was removed,the more seriously the yield decreased.Removing mulching film before the second irrigation could increase the yield of XLZ42 in the rainy year(2016)and the normal rainfall year(2017).Early film removal can in crease the yield of XLZ45 in the rainy year(2016).Conclusions:Collectively,our stud/s experimental results indicate that applying mulch film removal at an appropriate,targeted time after seedling emerge nee had no adverse effects on soil moisture and temperature,and improved the photosy nthetic performance of cotton,thus in creased cotton yield and fiber quality,but no significant difference was reached.