期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Experimental investigation on coal pore-fracture variation and fractal characteristics synergistically affected by solvents for improving clean gas extraction
1
作者 Feilin Han Sheng Xue +3 位作者 Chunshan Zheng Zhongwei Chen Guofu Li Bingyou Jiang 《International Journal of Mining Science and Technology》 SCIE EI CAS 2024年第3期413-425,共13页
Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal... Chemical solvents instead of pure water being as hydraulic fracturing fluid could effectively increase permeability and improve clean methane extraction efficiency.However,pore-fracture variation features of lean coal synergistically affected by solvents have not been fully understood.Ultrasonic testing,nuclear magnetic resonance analysis,liquid phase mass spectrometry was adopted to comprehensively analyze pore-fracture change characteristics of lean coal treated by combined solvent(NMP and CS_(2)).Meanwhile,quantitative characterization of above changing properties was conducted using geometric fractal theory.Relationship model between permeability,fractal dimension and porosity were established.Results indicate that the end face fractures of coal are well developed after CS2and combined solvent treatments,of which,end face box-counting fractal dimensions range from 1.1227 to 1.4767.Maximum decreases in ultrasonic longitudinal wave velocity of coal affected by NMP,CS_(2)and combined solvent are 2.700%,20.521%,22.454%,respectively.Solvent treatments could lead to increasing amount of both mesopores and macropores.Decrease ratio of fractal dimension Dsis 0.259%–2.159%,while permeability increases ratio of NMR ranges from 0.1904 to 6.4486.Meanwhile,combined solvent could dissolve coal polar and non-polar small molecules and expand flow space.Results could provide reference for solvent selection and parameter optimization of permeability-enhancement technology. 展开更多
关键词 Clean gas extraction Chemical solvent Experimental investigation Fractal characteristics Pore fracture
下载PDF
Effect of damage zone around borehole on carbon dioxide injection promoted gas extraction in soft and low-permeability coal seam
2
作者 Lijun ZHOU Xihua ZHOU +2 位作者 Gang BAI Xianlin LI Mingkun LUO 《Frontiers of Earth Science》 SCIE CSCD 2023年第3期776-787,共12页
Injecting external CO_(2) into soft and low-permeability coal seams can improve CH4 extacctinn efficiency, and also benefit in CO_(2) sequestration. However, the distribution law of damage zone around borehole in soft... Injecting external CO_(2) into soft and low-permeability coal seams can improve CH4 extacctinn efficiency, and also benefit in CO_(2) sequestration. However, the distribution law of damage zone around borehole in soft coal seam and its effect on the efficiency of CO_(2) injection promoted CH4 extraction are not clear. In this paper, a multi-physics coupling mathematical model considering damage effect is established for simulating the process of CO_(2) injection promoted CH4 extraction in soft and low-permeability coal seam. The distribution of damage zone and permeability around boreholes under different diameters and coal strengths are analyzed. The gas pressure and gas content in coal seam during CO_(2) injection promoted CH4 extraction when the model considered damage effect are compared with that of ignored. The results show that small borehole diameter corresponds to narrow damage zone around the borehole in coal seam. The damage zone expands with the increase of the borehole diameter. The damage zone increases exponentially with the borehole diameter, while decreases exponentially with the compressive strength of coal seam. The highest permeability in the damage zone has increased by nearly 300 times under the condition of simulated case. CH4 pressure around the extraction borehole reduces, and the reduction area expands with the increase of time. Compared with the result of considering the damage effect, the reduction area of ignoring it is smaller, and the reducing speed is slower. The integrated effect of CO_(2) injection and CH4 extraction leads to rapid decrease of CH4 content in coal seam near the boreholes. The CO_(2) pressure and content increase around the injection borehole, and the increasing area gradually extends to the whole coal seam. In soft coal seams, failure to consider the damage effect will underestimate the efficiency of CH4 extraction and CO_(2) sequestration, resulting conservative layout of boreholes. 展开更多
关键词 soft and low-permeability coal seam carbon dioxideinjection gas extraction damageeffect permeability evolution
原文传递
Elimination mechanism of coal and gas outburst based on geo‑dynamic system with stress–damage–seepage interactions
3
作者 Lingjin Xu Chaojun Fan +4 位作者 Mingkun Luo Sheng Li Jun Han Xiang Fu Bin Xiao 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期47-61,共15页
Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynam... Coal and gas outburst is a complex dynamic disaster during coal underground mining.Revealing the disaster mechanism is of great signifcance for accurate prediction and prevention of coal and gas outburst.The geo-dynamic system of coal and gas outburst is proposed.The framework of geo-dynamic system is composed of gassy coal mass,geological dynamic environment and mining disturbance.Equations of stress–damage–seepage interaction for gassy coal mass is constructed to resolve the outburst elimination process by gas extraction with boreholes through layer in foor roadway.The results show the occurrence of outburst is divided into the evolution process of gestation,formation,development and termination of geo-dynamic system.The scale range of outburst occurrence is determined,which provides a spatial basis for the prevention and control of outburst.The formation criterion and instability criterion of coal and gas outburst are established.The formation criterion F1 is defned as the scale of the geo-dynamic system,and the instability criterion F2 is defned as the scale of the outburst geo-body.According to the geo-dynamic system,the elimination mechanism of coal and gas outburst—‘unloading+depressurization’is established,and the gas extraction by boreholes through layer in foor roadway for outburst elimination is given.For the research case,when the gas extraction is 120 days,the gas pressure of the coal seam is reduced to below 0.4 MPa,and the outburst danger is eliminated efectively. 展开更多
关键词 Coal and gas outburst Geo-dynamic system Stress–damage–seepage coupling Elimination mechanism Instability criterion gas extraction
下载PDF
Study on "fracturing-sealing" integration technology based on high-energy gas fracturing in single seam with high gas and low air permeability 被引量:10
4
作者 Zhang Chao Lin Baiquan +2 位作者 Zhou Yan Zhai Cheng Zhu Chuanjie 《International Journal of Mining Science and Technology》 SCIE EI 2013年第6期841-846,共6页
To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305... To improve the gas extraction efficiency of single seam with high gas and low air permeability,we developed the"fracturing-sealing"integration technology,and carried out the engineering experiment in the3305 Tunliu mine.In the experiment,coal seams can achieve the aim of antireflection effect through the following process:First,project main cracks with the high energy pulse jet.Second,break the coal body by delaying the propellant blasting.Next,destroy the dense structure of the hard coal body,and form loose slit rings around the holes.Finally,seal the boreholes with the"strong-weak-strong"pressurized sealing technology.The results are as follows:The average concentration of gas extraction increases from8.3%to 39.5%.The average discharge of gas extraction increases from 0.02 to 0.10 m^3/min.The tunneling speeds up from 49.5 to 130 m/month.And the permeability of coal seams improves nearly tenfold.Under the same conditions,the technology is much more efficient in depressurization and antireflection than common methods.In other words,it will provide a more effective way for the gas extraction of single seam with high gas and low air permeability. 展开更多
关键词 Coal gas High-energy gas fracturing "Fracturing-sealing" integration Pressure relief and permeability increase gas extraction
下载PDF
A Study on the Dynamic Adjustment of Pressure Relief Gas Drainage Drilling in Mined-Out Areas
5
作者 Bo Bi Jianbing Meng Bengliang Cheng 《World Journal of Engineering and Technology》 2021年第2期337-345,共9页
With the development of coal mine equipment mechanization, the wide application of </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">... With the development of coal mine equipment mechanization, the wide application of </span><span style="font-family:Verdana;">“</span><span style="font-family:Verdana;">hole instead of roadway</span><span style="font-family:Verdana;">”</span><span style="font-family:Verdana;"> technology greatly reduces the cost of gas control engineering, but puts forward higher requirements for the effect of gas drainage. At present, the drainage effect of coal mine inspection boreholes is mainly evaluated by the drilling field, but the flow rate and gas concentration of each borehole in the drilling field are not the same, which causes the gas drainage effect not to be correctly mastered. In the present study, the pressure relief drilling in the goaf of the working face of a typical multi-coal seam group high gas outburst mining area was taken as the research object. Through the newly developed portable drilling inspection device, the pure amount of drilling drainage was investigated, and the drilling design was dynamically adjusted. The enhancement of the goaf pressure relief gas control effect ensures the gas safety of the mining face. At the same time, this improves the gas extraction rate and reduces the emission of greenhouse gases. If the data from the borehole investigation can be transmitted in real time and analyzed in big data, the optimal extraction negative pressure can be predicted through a regression algorithm. Under the control of the negative pressure of each borehole by the actuator, the extraction system can have the function of intelligent judgment. 展开更多
关键词 Pressure-Relief gas extraction Study on the extraction Effect Borehole Design Determination of Pore Parameters
下载PDF
Gas-Liquid Separation Processes for Mud Logging Systems
6
作者 Daniela Martins Marum Maria Dina Afonso Brian Bernardo Ochoa 《Journal of Geological Resource and Engineering》 2021年第2期29-37,共9页
The TRU-Vision system,developed by Baker Hughes,analyzes the gas extracted from drilling mud to estimate the hydrocarbons composition in drilled rock formations.Several separation processes had been surveyed in order ... The TRU-Vision system,developed by Baker Hughes,analyzes the gas extracted from drilling mud to estimate the hydrocarbons composition in drilled rock formations.Several separation processes had been surveyed in order to enhance the gas extraction at the gas trap,namely,mechanical stirring,vacuum,air sparging,membrane separation processes,ultrasounds,and cyclones.Mechanical stirring devices(one propeller,one flat-blade turbine,and two baffles sets),a vacuum generator,and an air bubble generator were designed and assembled to increase the efficiency and the response stability of TRU-Vision system. 展开更多
关键词 Air sparging gas extraction mechanical stirring mud logging VACUUM
下载PDF
Key technologies and engineering practices for soft-rock protective seam mining 被引量:8
7
作者 Xiang Cheng Guangming Zhao +2 位作者 Yingming Li Xiangrui Meng Qingyi Tu 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2020年第6期889-899,共11页
Severe gas disasters in deep mining areas are increasing,and traditional protective coal seam mining is facing significant challenges.This paper proposes an innovative technology using soft rock as the protective seam... Severe gas disasters in deep mining areas are increasing,and traditional protective coal seam mining is facing significant challenges.This paper proposes an innovative technology using soft rock as the protective seam in the absence of an appropriate coal seam.Based on the geological engineering conditions of the new horizontal first mining area of Luling Coal Mine in Huaibei,China,the impacts of different mining parameters of the soft-rock protective seam on the pressure-relief effect of the protected coal seam were analyzed through numerical simulation.The unit stress of the protected coal seam,which was less than half of the primary rock stress,was used as the mining stress pressure-relief index.The optimized interlayer space was found to be 59 m for the first soft-rock working face,with a 2 m mining thickness and 105 m face length.The physicochemical characteristics of the orebody were analyzed,and a device selection framework for the soft-rock protective seam was developed.Optimal equipment for the working face was selected,including the fully-mechanized hydraulic support and coal cutter.A production technology that combined fully-mechanized and blasting-assisted soft-rock mining was developed.Engineering practices demonstrated that normal circulation operation can be achieved on the working face of the soft-rock protective seam,with an average advancement rate of 1.64 m/d.The maximum residual gas pressure and content,which were measured at the cut hole position of the protected coal seams(Nos.8 and 9),decreased to 0.35 MPa and 4.87 m^3/t,respectively.The results suggested that soft-rock protective seam mining can produce a significant gas-control effect. 展开更多
关键词 gas outburst hazard Soft-rock protective seam Pressure-relief Three-machine optimization Blasting-assisted mining gas extraction
下载PDF
Research progress on permeability improvement mechanisms and technologies of coalbed deep-hole cumulative blasting 被引量:5
8
作者 Deyong Guo Pengfei Lv +1 位作者 Jiechao Zhao Chao Zhang 《International Journal of Coal Science & Technology》 EI 2020年第2期329-336,共8页
Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content an... Coalbed gas extraction is an important means of exploiting and utilizing gas resources,as well as a means of preventing coal mine disasters.In view of the low gas extraction rate from coalbeds with high gas content and low permeability,a method of improving permeability through deep-hole cumulative blasting is applied to develop initial directional fractures using a jet flow.Under the action of the blasting stress wave and detonation gas wedge,the fractures extend over a large range within the coal,thereby improving coalbed permeability.This study focuses on the criteria of cumulative blasting-induced coalbed fracturing based on a literature review of the penetration effect of cumulative blasting.On this basis,we summarize the coal fracturing zone,crack extension process,and the key technologies of charging and hole sealing for cumulative blasting.In addition,the latest research progress in the optimization of field test drilling and blasting parameters for cumulative blasting is introduced.Research findings indicate that the permeability improvement mechanism of cumulative blasting could be further enhanced,and the technology and technical equipment are in urgent need of improvement.Finally,development trends in the cumulative blasting permeability improvement technique are identified. 展开更多
关键词 Cumulative blasting Fracturing mechanism Coalbed permeability improvement Permeability improvement technology gas extraction
下载PDF
Coal Seam Permeability Improvement and CBM Production Enhancement by Enlarged Borehole: Mechanism and Application
9
作者 Xiyuan Li Peng Chu +5 位作者 Zhuang Lu Yuanyuan Liu Zibin Zhu Jin Gao Xiaoxue Liao Tao Yang 《Energy Engineering》 EI 2021年第6期1811-1825,共15页
The permeability is a key factor to determine the efficiency of coalbed methane(CBM)production.The borehole enlargement technology using hydraulic and mechanical measures to cut coal is an effective method to increase... The permeability is a key factor to determine the efficiency of coalbed methane(CBM)production.The borehole enlargement technology using hydraulic and mechanical measures to cut coal is an effective method to increase the coal seam permeability and improve the efficiency of gas drainage.Reasonable design of the layout of boreholes is the prerequisite for efficient and economical gas drainage.In this paper,based on the strain-softening model,the stress and permeability model of the coal seam around the enlarged borehole was built,and based on the dual-medium model,the gas migration model in the coal seam was established.Then the borehole enlargement gas drainage engineering of E9/10 coal seam in Pingdingshan No.8 coal mine was simulated by using COMSOL Multiphysics software.The distribution of stress and permeability in the coal seam around a borehole was analyzed,and the reasonable borehole radius of 0.25 m and reasonable borehole spacing of 6 m were determined.Finally,in Pingdingshan No.8 coal mine,field application was carried out in E9/10 coal seam-21070 working face from the high-level gas drainage roadway.The results show that the actual average coal slag discharge rate is 77.82%,which achieved borehole enlargement.The natural gas flow rate from an enlarged borehole is 2.3–7.3 times that of a normal borehole,and the influence range of enlarged boreholes is more than 6 m.The average gas drainage concentration of a group of enlarged boreholes is about 42%,and the average gas drainage amount is about 0.53 m3/min.After two months of gas extraction,the outburst risk in this area was eliminated,which provides a guarantee for safe coal mining. 展开更多
关键词 CBM production gas extraction enlarged borehole permeability improvement numerical simulation field application
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部