The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of th...The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.展开更多
As a key part of the pyrotechnic gas generator,the filter not only removes the particulate matter but also cools the hot gas to a safe level.This paper aims to improve the understanding of the basic heat and flow phen...As a key part of the pyrotechnic gas generator,the filter not only removes the particulate matter but also cools the hot gas to a safe level.This paper aims to improve the understanding of the basic heat and flow phenomenon in the gas generator.The pyrotechnic gas generator is modelling by a simplified filter structure with fiber arrays.A finite-volume model of the heat and fluid flow is proposed to simulate the detailed multi-dimensional flow and energy conversion behaviors.Several verification results are in good agreement with data in different references.Simulation results demonstrate that the filter can not only absorb heat from the gas but also cause the high intensity enhancement of the heat transfer.The performance difference between inline and staggered arrays is also discussed.The findings of the study put a further prediction tool for the understanding and design of the filter system with fibers.展开更多
The rotor initial unbalance of an aeroengine gas generator of turboshaft engine seriously affects rotor assembly process.To reasonably optimize rotor assembly process,the effect analyses of rotor initial unbalance of ...The rotor initial unbalance of an aeroengine gas generator of turboshaft engine seriously affects rotor assembly process.To reasonably optimize rotor assembly process,the effect analyses of rotor initial unbalance of single disc and combined discs on rotor dynamic characteristics are firstly implemented in respect of the dispersity of rotor initial unbalance.It is found that the most important factors contributing to rotor vibration are the unbalances of the first stage compressor disc and the second stage turbine disc.However,reducing the mass of two discs conflicts with the control of the whole gas generator rotor balance resulting from the unbalance increase of single components.Thus,we further analyze the key control factors of affecting rotor initial unbalance,and give the strict control measures of centrifugal impeller runout in the assembly process by adjusting the angle of central tie rod axis.The purpose of this measures to make the assembly process simpler and more effective for timely controlling rotor initial unbalance.The efforts of this study validate that the proposed method is workable for the rotor tightened by a central tie rod and possesses the significant meaning of practical application in engineering.展开更多
A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was...A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.展开更多
A great challenge in water electrolysis is how to optimize the major factors that influence the production of hydrogen gas. Over the past years, different methods have been used to produce hydrogen gas from carbon-bas...A great challenge in water electrolysis is how to optimize the major factors that influence the production of hydrogen gas. Over the past years, different methods have been used to produce hydrogen gas from carbon-base fossil fuels but these methods have been proven to be environmentally unfriendly due to the enormous release of greenhouse gases associated with their use. In this work, an experimental study was carried out to evaluate the effect of electrolyte strength, voltage and time on the volume of HHO gas produced using a design built HHO gas generator. The generator was constructed from Stainless Steel 316 L plates made of 3 anodes, 3 cathodes, and 20 neutral plates. During the study, the strengths of KOH, NaOH, and NaHCO3 was prepared within the range of 0.010 M - 0.030 M. The prepared strengths for each catalyst were then varied across voltage range of 9 V to 13 V for 50 seconds. The experimental results obtained showed that, increasing electrolyte strength, voltage and time proportionally increased the yield of HHO gas. An optimal yield rate of 2.27 cm3/s of HHO gas was obtained when the generator was run at 13 V using 0.025 M KOH. In addition, other factors studied including electrode surface morphology, plate’s configuration, and temperature also showed improvement in yield of HHO gas by 41.85%, 69.74%, and 71.96% respectively.展开更多
We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced c...We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced closed-cycle oxy-fuel combustion gas turbine-a type of complex and efficient oxy-fuel gas turbine. In this study, a LSCHG is designed to heat water to saturated steam of a few MPa, to assist in the generation of the main working fluids, instead of a compressor used in the advanced oxy-fuel gas turbine. This saturated steam can have a lower pressure and temperature than those of an existing nuclear power plant or biomass-fired power plant. We estimated plant performances in LHV (lower heating value) basis from a heat balance model based on a conceptual design of a plant for different gas turbine inlet pressures and temperatures of 1,300 ℃ and 1,500 ℃, taking into account the work to produce O2 and capture CO2. While the net power generating efficiencies of a reference plant are estimated to be about 52.0% and 56.0% at 1,300 ℃ and 1,500 ℃, respectively, and conventional LSCHG power plant is assumed to have an efficiency of about 35% or less for pressures of 2.5-6.5 MPa, the proposed hybrid plant achieved 42.8%-44.7% at 1,300 ℃ and 47.8%-49.2% at 1,500 ℃. In the proposed plant, even supposing that the generating efficiency of the LNG system in the proposed plant remains equal to that of the reference plant, the efficiency of LSCHG system can be estimated 37.4% for 6.5 MPa and 33.2% for 2.5 MPa, even though the LSHCG system may be regarded as consisting of fewer plant facilities than a conventional LSCHG power plant.展开更多
Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supp...Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.展开更多
This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas genera...This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas generation yields and rates in geological history computed by the acquired kinetic parameters of typical marine organic matters (reservoir oil, residual bitumen, lowmaturity kerogen and residual kerogen) in both China and abroad and maturity by the EasyRo(%) method. Here, the main gas-generation phase was determined as Ro%=1.4%-2.4% for type Ⅰ kerogen, Ro%=1.5-3.0% for low-maturity type Ⅱ kerogen, Ro%=1.4-2.8% for residual kerogen, Ro%=1.5-3.2% for residual bitumen and Ro%=1.6-3.2% for reservoir oil cracking. The influences on the main gas-generation phase from the openness of the simulated system and the "dead line" of natural gas generation are also discussed. The results indicate that the openness of simulation system has a definite influence on computing the main gas-generation phase. The main gas-generation phase of type Ⅱ kerogen is Ro%=1.4-3.1% in an open system, which is earlier than that in a closed system. According to our results, the "dead line" of natural gas generation is determined as Ro=3.5 % for type Ⅰ kerogen, Ro=4.4-4.5% for type Ⅱ kerogen and Ro=4.6% for marine oil. Preliminary applications are presented taking the southwestern Tarim Basin as an example.展开更多
As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs us...As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.展开更多
The Riemann problem for the Aw-Rascle model in the traffic flow with the Delta initial data for the Chaplygin gas is studied. The solutions are constructed globally under the generalized Rankine-Hugoniot relations, t...The Riemann problem for the Aw-Rascle model in the traffic flow with the Delta initial data for the Chaplygin gas is studied. The solutions are constructed globally under the generalized Rankine-Hugoniot relations, the δ-entropy conditions, and the generalized δ-entropy conditions. A new Delta wave, which is called a primary Delta wave, is defined in some solutions. The primary Delta wave satisfies the generalized Rankine- Hugoniot relations and the generalized δ-entropy conditions. It generates initially from the Delta initial data, which either evaluates a Delta wave, whose weight becomes stronger and stronger, or disappears at a finite time.展开更多
We study the generalized Riemann problem of the Chapman-Jouguet model for an ideal combustible Chaplygin gas. By analyzing the wave curves in the phase plane, we construct uniquely the solution of the generalized Riem...We study the generalized Riemann problem of the Chapman-Jouguet model for an ideal combustible Chaplygin gas. By analyzing the wave curves in the phase plane, we construct uniquely the solution of the generalized Riemann problem under the global entropy conditions. We find that although there is no combustion wave of the corresponding Riemann solution, the combustion wave may occur after perturbation which reveals the instability of the unburnt gas.展开更多
We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from ...We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic mi- crowave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of θBAO (Z = 0.55) = (3.90° ±0.38°) for the angular BAO scale. The constraint results for the NGCG model are ωX=-1.0510+0.1563-0.1685(1σ)+0.2226-0.2398(2σ),η=1.0117+0.0469-0.0502(1σ)+0.0693-0.0716(2σ)and ΩX=0.7297+0.0229-0.0276(1σ)+0.0329-0.0402(2σ), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the proba- bility that energy transfers from dark matter to dark energy is a little larger than the inverse.展开更多
The Sandage Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2 〈 z 〈 5. In this work, we investigate its constrai...The Sandage Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2 〈 z 〈 5. In this work, we investigate its constraints on the unified dark energy and dark matter models including the generalized Chaplygin gas and the superfluid Chaplygin gas. In addition, type Ia supernovae (SNIa) data and the distance ratios derived from the cosmic microwave background radiation and baryon acoustic oscillation observations (CMB/BAO) are also used. We find that the mock SL data gives the tightest constraints on the model parameters and it can help to reduce the parameter regions allowed by the present SNIa+CMB/BAO by about 75% when all datasets considered are combined. Thus the SL test is a worthy and long awaited measurement to probe effectively the cosmic expanding history and the properties of dark energy.展开更多
This paper is devoted to studying the generalized Chaplygin gas models in Bianchi type III space- time geometry with time varying bulk viscosity, cosmological and gravitational constants. We are considering the condit...This paper is devoted to studying the generalized Chaplygin gas models in Bianchi type III space- time geometry with time varying bulk viscosity, cosmological and gravitational constants. We are considering the condition on metric potential . Also to obtain deterministic models we have considered physically reasonable relations like , and the equation of state for generalized Chaplygin gas given by . A new set of exact solutions of Einstein’s field equations has been obtained in Eckart theory, truncated theory and full causal theory. Physical behaviour of the models has been discussed.展开更多
In this paper, we investigate the elementary wave interactions of the Aw-Rascle model for the generalized Chaplygin gas. We construct the unique solution by the characteristic analysis method and obtain the stability ...In this paper, we investigate the elementary wave interactions of the Aw-Rascle model for the generalized Chaplygin gas. We construct the unique solution by the characteristic analysis method and obtain the stability of the corresponding Riemann solutions under such small perturbations on the initial values. We find that the elementary wave interactions have a much more simple structure for Temple class than general systems of conservation laws. It is important to study the elementary waves interactions of the traffic flow system for the generalized Chaplygin gas not only because of their significance in practical applications in the traffic flow system, but also because of their basic role for the general mathematical theory.展开更多
In this paper we have considered a model of the universe filled with Generalized Cosmic Chaplygin Gas and another fluid with barotropic equation of state. We observe its role in accelerating phase of the universe by c...In this paper we have considered a model of the universe filled with Generalized Cosmic Chaplygin Gas and another fluid with barotropic equation of state. We observe its role in accelerating phase of the universe by considering the mixture of these two fluid models valid from the radiation era to for and the radiation era to quintessence model for . The statefinder parameters describe the evolution of the universe in different phases for these two fluid models.展开更多
By simulating test and study in laboratory, the structure and performance offrothing generator were determined. The relative curves between the frothing volume and gas velocityof foaming net, supplying liquid volume a...By simulating test and study in laboratory, the structure and performance offrothing generator were determined. The relative curves between the frothing volume and gas velocityof foaming net, supplying liquid volume and the content of foaming agent were obtainedrespectively. There were an optimum gas-velocity of foaming net, an optimum supplying liquid volumeand an optimum content of foaming agent under the condition of the given material quality and shapeof foaming net and spraying form. The spraying froth is of a great assistance in collectingrespirable dust.展开更多
For most of their energy requirements, greater part of remote communities and small islands around the world rely on imported fossil fuels. The economical cost of energy is therefore very high not only due to inherent...For most of their energy requirements, greater part of remote communities and small islands around the world rely on imported fossil fuels. The economical cost of energy is therefore very high not only due to inherent cost of fuel, but also due to transportation and due to maintenance costs. One solution for saving fuel in a diesel generator is to allow the engine to operate directly in relation to the request for electrical load at variable speeds. Genset-Synchro Technology has developed an innovative variable speed?generator technology (patent pending) that allows applications where power demand varies widely to benefit from the new technology that maintains constant voltage and frequency while adjusting the generator stator speed to power demand. This paper will present an innovative approach for optimizing the energy production based from the fact that the structure that contains the stator windings of the generator is mounted on roller bearings, which allows its free rotation around the axis of the rotor, consequently stopping the stator structure from being static and aims to minimize the unit cost of electricity. Case study on application in remote area in the north of Quebec is described. A saving of 7%?-?9% on fuel consumption and greenhouse gas (GHG) under low winter ambient temperatures has been registered.展开更多
An experimental investigation of the saturation ion current densities (Jions) in hydrogen inductively coupled plasma (ICP) produced by a large-power (2-32 kW) radio frequency (RF) generator is reported, then s...An experimental investigation of the saturation ion current densities (Jions) in hydrogen inductively coupled plasma (ICP) produced by a large-power (2-32 kW) radio frequency (RF) generator is reported, then some reasonable explanations are given out. With the increase of RF power, the experimental results show three stages: in the first stage (2-14 kW), the electron temperature will rise with the increase of RF power in the ICP, thus, the Jions increases continually as the electron temperature rises in the ICP. In the second stage (14 20 kW), as some H- ions lead to the mutual neutralization (MN), the slope of Jio^s variation firstly decreases then increases. In the third stage (20-32 kW), both the electronic detachment (ED) and the associative detachment (AD) in the ICP result in the destruction of H- ions, therefore, the increased amplitude of the Jions in the third stage is weaker than the one in the first stage. In addition, with the equivalent transformer model, we successfully Explain that the Jions at different radial locations in ICP has the same rule. Finally, it is found that the Jions has nothing to do with the outer/inner puffing gas pressure ratio, which is attributed to the high-speed movement of hydrogen molecules.展开更多
The paper describes the effects of heat transfer enhancement and gas-flow characteristics by wing-type-vortex-generators inside a rectangular gas-flow duct of a plate-fin structure exhaust gas recirculation (EGR) cool...The paper describes the effects of heat transfer enhancement and gas-flow characteristics by wing-type-vortex-generators inside a rectangular gas-flow duct of a plate-fin structure exhaust gas recirculation (EGR) cooler used in a cooled-EGR system. The analyses are conducted using computational fluid dynamics (CFD). The numerical modelling is designed as a gas-flow rectangular duct of an EGR cooler using two fluids with high temperature gas and coolant water whose flow directions are opposite. The gas-flow duct used to separate two fluids is assembled with a stainless steel material. The inlet temperature and velocity of gas flowed inside gas-flow duct are 400°C and 30 m/s, respectively. Coolant water is flowed into two ducts on both a top and a bottom surface of the gas-flow duct, and the inlet temperature and velocity is 80°C and 0.6 m/s, respectively. Wing-type-vortex-generators are designed to achieve good cooling performance and low pressure drop and positioned at the center of the gas-flow duct with angle of inclination from 30 to 150 degrees at every 15 degrees. The temperature distributions and velocity vectors gained from numerical results were compared, and discussed. As a result, it is found that the vortices guided in the proximity of heat transfer surfaces play an important role in the heat transfer enhancement and low pressure drop. The collapse of the vortices is caused by complicated flow induced in the corner constituted by two surfaces inside gas-flow duct.展开更多
文摘The key and bottleneck of research on the tip-jet rotor compound helicopter lies in the power system. Computational Fluid Dynamics (CFD) was used to numerically simulate the gas generator and rotor inner passage of the tip-jet rotor composite power system, studying the effects of intake mode, inner cavity structure, propellant components, and injection amount on the characteristics of the composite power system. The results show that when a single high-temperature exhaust gas enters, the gas generator outlet fluid is uneven and asymmetric;when two-way high-temperature exhaust gas enters, the outlet temperature of the gas generator with a tilted inlet is more uniform than that with a vertical inlet;adding an inner cavity improves the temperature and velocity distribution of the gas generator's internal flow field;increasing the energy of the propellant is beneficial for improving the available moment.
基金This work is supported by the National Natural Science Foundation of China(Grant No.11972194)the Fundamental Research Funds for the Central Universities,No.30918011323China Postdoctoral Science Foundation funded project(Grant No.2015M581797).
文摘As a key part of the pyrotechnic gas generator,the filter not only removes the particulate matter but also cools the hot gas to a safe level.This paper aims to improve the understanding of the basic heat and flow phenomenon in the gas generator.The pyrotechnic gas generator is modelling by a simplified filter structure with fiber arrays.A finite-volume model of the heat and fluid flow is proposed to simulate the detailed multi-dimensional flow and energy conversion behaviors.Several verification results are in good agreement with data in different references.Simulation results demonstrate that the filter can not only absorb heat from the gas but also cause the high intensity enhancement of the heat transfer.The performance difference between inline and staggered arrays is also discussed.The findings of the study put a further prediction tool for the understanding and design of the filter system with fibers.
文摘The rotor initial unbalance of an aeroengine gas generator of turboshaft engine seriously affects rotor assembly process.To reasonably optimize rotor assembly process,the effect analyses of rotor initial unbalance of single disc and combined discs on rotor dynamic characteristics are firstly implemented in respect of the dispersity of rotor initial unbalance.It is found that the most important factors contributing to rotor vibration are the unbalances of the first stage compressor disc and the second stage turbine disc.However,reducing the mass of two discs conflicts with the control of the whole gas generator rotor balance resulting from the unbalance increase of single components.Thus,we further analyze the key control factors of affecting rotor initial unbalance,and give the strict control measures of centrifugal impeller runout in the assembly process by adjusting the angle of central tie rod axis.The purpose of this measures to make the assembly process simpler and more effective for timely controlling rotor initial unbalance.The efforts of this study validate that the proposed method is workable for the rotor tightened by a central tie rod and possesses the significant meaning of practical application in engineering.
基金supported by the National Research Foundation of Korea grant funded by the Korean Government(MSIP)NRF-2012M1A3A3A02033146 and NRF-2013M1A3A3A02042434
文摘A genetic algorithm was used to develop optimal design methods for the regenerative cooled combustor and fuel-rich gas generator of a liquid rocket engine. For the combustor design, a chemical equilibrium analysis was applied, and the profile was calculated using Rao's method. One-dimensional heat transfer was assumed along the profile, and cooling channels were designed. For the gas-generator design, non-equilibrium properties were derived from a counterflow analysis, and a vaporization model for the fuel droplet was adopted to calculate residence time. Finally, a genetic algorithm was adopted to optimize the designs. The combustor and gas generator were optimally designed for 30-tonf, 75-tonf, and 150-tonf engines. The optimized combustors demonstrated superior design characteristics when compared with previous non-optimized results. Wall temperatures at the nozzle throat were optimized to satisfy the requirement of 800 K, and specific impulses were maximized. In addition, the target turbine power and a burned-gas temperature of 1000 K were obtained from the optimized gas-generator design.
文摘A great challenge in water electrolysis is how to optimize the major factors that influence the production of hydrogen gas. Over the past years, different methods have been used to produce hydrogen gas from carbon-base fossil fuels but these methods have been proven to be environmentally unfriendly due to the enormous release of greenhouse gases associated with their use. In this work, an experimental study was carried out to evaluate the effect of electrolyte strength, voltage and time on the volume of HHO gas produced using a design built HHO gas generator. The generator was constructed from Stainless Steel 316 L plates made of 3 anodes, 3 cathodes, and 20 neutral plates. During the study, the strengths of KOH, NaOH, and NaHCO3 was prepared within the range of 0.010 M - 0.030 M. The prepared strengths for each catalyst were then varied across voltage range of 9 V to 13 V for 50 seconds. The experimental results obtained showed that, increasing electrolyte strength, voltage and time proportionally increased the yield of HHO gas. An optimal yield rate of 2.27 cm3/s of HHO gas was obtained when the generator was run at 13 V using 0.025 M KOH. In addition, other factors studied including electrode surface morphology, plate’s configuration, and temperature also showed improvement in yield of HHO gas by 41.85%, 69.74%, and 71.96% respectively.
文摘We propose a novel concept for power generation that involves the combination of a LSCHG (low-steam-condition heat generator), such as a light water nuclear reactor or a biomass combustion boiler, with an advanced closed-cycle oxy-fuel combustion gas turbine-a type of complex and efficient oxy-fuel gas turbine. In this study, a LSCHG is designed to heat water to saturated steam of a few MPa, to assist in the generation of the main working fluids, instead of a compressor used in the advanced oxy-fuel gas turbine. This saturated steam can have a lower pressure and temperature than those of an existing nuclear power plant or biomass-fired power plant. We estimated plant performances in LHV (lower heating value) basis from a heat balance model based on a conceptual design of a plant for different gas turbine inlet pressures and temperatures of 1,300 ℃ and 1,500 ℃, taking into account the work to produce O2 and capture CO2. While the net power generating efficiencies of a reference plant are estimated to be about 52.0% and 56.0% at 1,300 ℃ and 1,500 ℃, respectively, and conventional LSCHG power plant is assumed to have an efficiency of about 35% or less for pressures of 2.5-6.5 MPa, the proposed hybrid plant achieved 42.8%-44.7% at 1,300 ℃ and 47.8%-49.2% at 1,500 ℃. In the proposed plant, even supposing that the generating efficiency of the LNG system in the proposed plant remains equal to that of the reference plant, the efficiency of LSCHG system can be estimated 37.4% for 6.5 MPa and 33.2% for 2.5 MPa, even though the LSHCG system may be regarded as consisting of fewer plant facilities than a conventional LSCHG power plant.
文摘Application of a DFIG (doubly-fed induction generator), which is one of adjustable speed generators, to a gas engine cogeneration system has been investigated. To operate during a blackout as an emergency power supply is one of important roles for the gas engine eogeneration system. In the case of conventional constant speed of synchronous generator, the amount of the allowed step load is limited to around 30% of the rated power. On the other hand, DFIG is expected to increase the amount of step load during the stand-alone operation. In this paper, it has been demonstrated that an increase in the gas engine speed resulted in an increase in the maximum amount of step load using experimental equipment with a real gas engine. It has been concluded that the proposed system can improve the performance of an emergency power supply at step-loading.
文摘This paper probes the determination of the main gas-generation phase of marine organic mattes using the kinetic method. The main gas-generation phase of marine organic matters was determined by coupling the gas generation yields and rates in geological history computed by the acquired kinetic parameters of typical marine organic matters (reservoir oil, residual bitumen, lowmaturity kerogen and residual kerogen) in both China and abroad and maturity by the EasyRo(%) method. Here, the main gas-generation phase was determined as Ro%=1.4%-2.4% for type Ⅰ kerogen, Ro%=1.5-3.0% for low-maturity type Ⅱ kerogen, Ro%=1.4-2.8% for residual kerogen, Ro%=1.5-3.2% for residual bitumen and Ro%=1.6-3.2% for reservoir oil cracking. The influences on the main gas-generation phase from the openness of the simulated system and the "dead line" of natural gas generation are also discussed. The results indicate that the openness of simulation system has a definite influence on computing the main gas-generation phase. The main gas-generation phase of type Ⅱ kerogen is Ro%=1.4-3.1% in an open system, which is earlier than that in a closed system. According to our results, the "dead line" of natural gas generation is determined as Ro=3.5 % for type Ⅰ kerogen, Ro=4.4-4.5% for type Ⅱ kerogen and Ro=4.6% for marine oil. Preliminary applications are presented taking the southwestern Tarim Basin as an example.
基金supported by Science and Technology Major Project of Shanxi Province,China(No.20201101002)Science and Technology Major Project of China,China(No.2016ZX05043002)+1 种基金National Natural Science Foundation Project of China,China(No.51874319)Science Foundation of China University of Petroleum(Beijing),China(No.2462020QNXZ003)to support part of this work
文摘As the main unconventional natural gas reservoirs,shale gas reservoirs and coalbed methane(CBM)reservoirs belong to adsorptive gas reservoirs,i.e.,gas reservoirs containing adsorbed gas.Shale gas and CBM reservoirs usually have the characteristics of rich adsorbed gas and obvious dynamic changes of porosity and permeability.A generalized material balance equation and the corresponding reserve evaluation method considering all the mechanisms for both shale gas reservoirs and CBM reservoirs are necessary.In this work,a generalized material balance equation(GMBE)considering the effects of critical desorption pressure,stress sensitivity,matrix shrinkage,water production,water influx,and solubility of natural gas in water is established.Then,by converting the GMBE to a linear relationship between two parameter groups related with known formation/fluid properties and dynamic performance data,the straight-line reserve evaluation method is proposed.By using the slope and the y-intercept of this straight line,the original adsorbed gas in place(OAGIP),original free gas in place(OFGIP),original dissolved gas in place(ODGIP),and the original gas in place(OGIP)can be quickly calculated.Third,two validation cases for shale gas reservoir and CBM reservoir are conducted using commercial reservoir simulator and the coalbed methane dynamic performance analysis software,respectively.Finally,two field studies in the Fuling shale gas field and the Baode CBM field are presented.Results show that the GMBE and the corresponding straight-line reserve evaluation method are rational,accurate,and effective for both shale gas reservoirs and CBM reservoirs.More detailed information about reserves of shale gas and CBM reservoirs can be clarified,and only the straight-line fitting approach is used to determine all kinds of reserves without iteration,proving that the proposed method has great advantages compared with other current methods.
基金Project supported by the National Natural Science Foundation of China(No.11371240)the Scientific Research Innovation Project of Shanghai Municipal Education Commission(No.11ZZ84)the grant of "The First-Class Discipline of Universities in Shanghai"
文摘The Riemann problem for the Aw-Rascle model in the traffic flow with the Delta initial data for the Chaplygin gas is studied. The solutions are constructed globally under the generalized Rankine-Hugoniot relations, the δ-entropy conditions, and the generalized δ-entropy conditions. A new Delta wave, which is called a primary Delta wave, is defined in some solutions. The primary Delta wave satisfies the generalized Rankine- Hugoniot relations and the generalized δ-entropy conditions. It generates initially from the Delta initial data, which either evaluates a Delta wave, whose weight becomes stronger and stronger, or disappears at a finite time.
文摘We study the generalized Riemann problem of the Chapman-Jouguet model for an ideal combustible Chaplygin gas. By analyzing the wave curves in the phase plane, we construct uniquely the solution of the generalized Riemann problem under the global entropy conditions. We find that although there is no combustion wave of the corresponding Riemann solution, the combustion wave may occur after perturbation which reveals the instability of the unburnt gas.
基金supported by the National Natural Science Foundation of China under the Distinguished Young Scholar program(Grant No. 10825313)the National Basic Research Program of China (973 program,Grant No. 2012CB821804)the Fundamental Research Funds for the Central Universities and Scientific Research Foundation of Beijing Normal University
文摘We use the latest data to investigate observational constraints on the new generalized Chaplygin gas (NGCG) model. Using the Markov Chain Monte Carlo method, we constrain the NGCG model with type Ia supernovae from the Union2 set (557 data), the usual baryonic acoustic oscillation (BAO) observation from the spectroscopic Sloan Digital Sky Survey data release 7 galaxy sample, the cosmic mi- crowave background observation from the 7-year Wilkinson Microwave Anisotropy Probe results, newly revised data on H(z), as well as a value of θBAO (Z = 0.55) = (3.90° ±0.38°) for the angular BAO scale. The constraint results for the NGCG model are ωX=-1.0510+0.1563-0.1685(1σ)+0.2226-0.2398(2σ),η=1.0117+0.0469-0.0502(1σ)+0.0693-0.0716(2σ)and ΩX=0.7297+0.0229-0.0276(1σ)+0.0329-0.0402(2σ), which give a rather stringent constraint. From the results, we can see that a phantom model is slightly favored and the proba- bility that energy transfers from dark matter to dark energy is a little larger than the inverse.
基金Supported by the National Natural Science Foundation of China under Grants Nos 11175093,11222545,11435006,and 11375092the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No 20124306110001the K.C.Wong Magna Fund of Ningbo University
文摘The Sandage Loeb (SL) test is a direct measurement of the cosmic expansion by probing the redshift drifts of quasi-stellar objects in the 'redshift desert' of 2 〈 z 〈 5. In this work, we investigate its constraints on the unified dark energy and dark matter models including the generalized Chaplygin gas and the superfluid Chaplygin gas. In addition, type Ia supernovae (SNIa) data and the distance ratios derived from the cosmic microwave background radiation and baryon acoustic oscillation observations (CMB/BAO) are also used. We find that the mock SL data gives the tightest constraints on the model parameters and it can help to reduce the parameter regions allowed by the present SNIa+CMB/BAO by about 75% when all datasets considered are combined. Thus the SL test is a worthy and long awaited measurement to probe effectively the cosmic expanding history and the properties of dark energy.
文摘This paper is devoted to studying the generalized Chaplygin gas models in Bianchi type III space- time geometry with time varying bulk viscosity, cosmological and gravitational constants. We are considering the condition on metric potential . Also to obtain deterministic models we have considered physically reasonable relations like , and the equation of state for generalized Chaplygin gas given by . A new set of exact solutions of Einstein’s field equations has been obtained in Eckart theory, truncated theory and full causal theory. Physical behaviour of the models has been discussed.
文摘In this paper, we investigate the elementary wave interactions of the Aw-Rascle model for the generalized Chaplygin gas. We construct the unique solution by the characteristic analysis method and obtain the stability of the corresponding Riemann solutions under such small perturbations on the initial values. We find that the elementary wave interactions have a much more simple structure for Temple class than general systems of conservation laws. It is important to study the elementary waves interactions of the traffic flow system for the generalized Chaplygin gas not only because of their significance in practical applications in the traffic flow system, but also because of their basic role for the general mathematical theory.
文摘In this paper we have considered a model of the universe filled with Generalized Cosmic Chaplygin Gas and another fluid with barotropic equation of state. We observe its role in accelerating phase of the universe by considering the mixture of these two fluid models valid from the radiation era to for and the radiation era to quintessence model for . The statefinder parameters describe the evolution of the universe in different phases for these two fluid models.
基金This work was financially supported by the National Natural Science Foundation of China, No.50174004
文摘By simulating test and study in laboratory, the structure and performance offrothing generator were determined. The relative curves between the frothing volume and gas velocityof foaming net, supplying liquid volume and the content of foaming agent were obtainedrespectively. There were an optimum gas-velocity of foaming net, an optimum supplying liquid volumeand an optimum content of foaming agent under the condition of the given material quality and shapeof foaming net and spraying form. The spraying froth is of a great assistance in collectingrespirable dust.
文摘For most of their energy requirements, greater part of remote communities and small islands around the world rely on imported fossil fuels. The economical cost of energy is therefore very high not only due to inherent cost of fuel, but also due to transportation and due to maintenance costs. One solution for saving fuel in a diesel generator is to allow the engine to operate directly in relation to the request for electrical load at variable speeds. Genset-Synchro Technology has developed an innovative variable speed?generator technology (patent pending) that allows applications where power demand varies widely to benefit from the new technology that maintains constant voltage and frequency while adjusting the generator stator speed to power demand. This paper will present an innovative approach for optimizing the energy production based from the fact that the structure that contains the stator windings of the generator is mounted on roller bearings, which allows its free rotation around the axis of the rotor, consequently stopping the stator structure from being static and aims to minimize the unit cost of electricity. Case study on application in remote area in the north of Quebec is described. A saving of 7%?-?9% on fuel consumption and greenhouse gas (GHG) under low winter ambient temperatures has been registered.
基金supported by the National Magnetic Confinement Fusion Science Program of China(Nos.2011GB108011 and 2010GB103001)the Major International(Regional)Project Cooperation and Exchanges of China(No.11320101005)the Startup Fund from Fuzhou University(No.510071)
文摘An experimental investigation of the saturation ion current densities (Jions) in hydrogen inductively coupled plasma (ICP) produced by a large-power (2-32 kW) radio frequency (RF) generator is reported, then some reasonable explanations are given out. With the increase of RF power, the experimental results show three stages: in the first stage (2-14 kW), the electron temperature will rise with the increase of RF power in the ICP, thus, the Jions increases continually as the electron temperature rises in the ICP. In the second stage (14 20 kW), as some H- ions lead to the mutual neutralization (MN), the slope of Jio^s variation firstly decreases then increases. In the third stage (20-32 kW), both the electronic detachment (ED) and the associative detachment (AD) in the ICP result in the destruction of H- ions, therefore, the increased amplitude of the Jions in the third stage is weaker than the one in the first stage. In addition, with the equivalent transformer model, we successfully Explain that the Jions at different radial locations in ICP has the same rule. Finally, it is found that the Jions has nothing to do with the outer/inner puffing gas pressure ratio, which is attributed to the high-speed movement of hydrogen molecules.
文摘The paper describes the effects of heat transfer enhancement and gas-flow characteristics by wing-type-vortex-generators inside a rectangular gas-flow duct of a plate-fin structure exhaust gas recirculation (EGR) cooler used in a cooled-EGR system. The analyses are conducted using computational fluid dynamics (CFD). The numerical modelling is designed as a gas-flow rectangular duct of an EGR cooler using two fluids with high temperature gas and coolant water whose flow directions are opposite. The gas-flow duct used to separate two fluids is assembled with a stainless steel material. The inlet temperature and velocity of gas flowed inside gas-flow duct are 400°C and 30 m/s, respectively. Coolant water is flowed into two ducts on both a top and a bottom surface of the gas-flow duct, and the inlet temperature and velocity is 80°C and 0.6 m/s, respectively. Wing-type-vortex-generators are designed to achieve good cooling performance and low pressure drop and positioned at the center of the gas-flow duct with angle of inclination from 30 to 150 degrees at every 15 degrees. The temperature distributions and velocity vectors gained from numerical results were compared, and discussed. As a result, it is found that the vortices guided in the proximity of heat transfer surfaces play an important role in the heat transfer enhancement and low pressure drop. The collapse of the vortices is caused by complicated flow induced in the corner constituted by two surfaces inside gas-flow duct.