lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace b...lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.展开更多
The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas sampl...The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination(R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1,2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area(%) in comparison with the averaged relative peak area of each method at 0 day.The indices of the bottle full of water method were the lowest(99.5%–108.5%) compared to the indices of vacuum bag and vacuum vial methods(119%–217%). Meanwhile, the gas chromatograph determination of other gas components(O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.展开更多
基金We gratefully acknowledge the support of the National Basic Research Program of China (973 Program) (No. 2012CB720401 ) and the Key Project of National Natural Science Foundation of China (No. 51134008).
文摘lronmaking using an oxygen blast furnace is an attractive approach for reducing energy consumption in the iron and steel industry. This paper presents a numerical study of gas-solid flow in an oxygen blast fur- nace by coupling the discrete element method with computational fluid dynamics. The model reliability was verified by previous experimental results. The influences of particle diameter, shaft tuyere size, and specific ratio (X) of shaft-injected gas (51G) flowrate to total gas flowrate on the SIC penetration behavior and pressure field in the furnace were investigated. The results showed that gas penetration capacity in the furnace gradually decreased as the particle diameter decreased from 100 to 40 mm. Decreasing particle diameter and increasing shaft tuyere size both slightly increased the SIG concentration near the furnace wall but decreased it at the furnace center. The value of X has a significant impact on the SIG distribution. According to the pressure fields obtained under different conditions, the key factor affecting SIG penetration depth is the pressure difference between the upper and lower levels of the shaft tuyere. If the pressure difference is small, the SIG can easily penetrate to the furnace center.
基金supported by the National Natural Science Foundation of China (No.41301575)Special Preliminary Study Program of the National Basic Research Program (973) of China (No. 2012CB426503)
文摘The emission of N2 is important to remove excess N from lakes, ponds, and wetlands. To investigate the gas emission from water, Gao et al.(2013) developed a new method using a bubble trap device to collect gas samples from waters. However, the determination accuracy of sampling volume and gas component concentration was still debatable. In this study, the method was optimized for in situ sampling, accurate volume measurement and direct injection to a gas chromatograph for the analysis of N2 and other gases. By the optimized new method, the recovery rate for N2 was 100.28% on average; the mean coefficient of determination(R2) was 0.9997; the limit of detection was 0.02%. We further assessed the effects of the new method, bottle full of water, vs. vacuum bag and vacuum vial methods, on variations of N2 concentration as influenced by sample storage times of 1,2, 3, 5, and 7 days at constant temperature of 15°C, using indices of averaged relative peak area(%) in comparison with the averaged relative peak area of each method at 0 day.The indices of the bottle full of water method were the lowest(99.5%–108.5%) compared to the indices of vacuum bag and vacuum vial methods(119%–217%). Meanwhile, the gas chromatograph determination of other gas components(O2, CH4, and N2O) was also accurate. The new method was an alternative way to investigate N2 released from various kinds of aquatic ecosystems.