Porous gas bearings(PGBs)have a proactive application in aerospace and turbomachinery.This study investigates the gas lubrication performance of a PGB with the condition of velocity slip boundary(VSB)owing to the high...Porous gas bearings(PGBs)have a proactive application in aerospace and turbomachinery.This study investigates the gas lubrication performance of a PGB with the condition of velocity slip boundary(VSB)owing to the high Knudsen number in the gas film.The Darcy-Forchheimer laws and modified Navier-Stokes equations were adopted to describe the gas flow in the porous layer and gas film region,respectively.An improved bearing experimental platform was established to verify the accuracy of the derived theory and the reliability of the numerical analysis.The effects of various parameters on the pressure distribution,flow cycle,load capacity,mass flow rate,and velocity profile are demonstrated and discussed.The results show that the gas can flow in both directions,from the porous layer to the gas film region,or in reverse.The load capacity of the PGB increases with an increase in speed and inlet pressure and decreases with an increase in permeability.The mass flow rate increases as the inlet pressure and permeability increase.Furthermore,the simulation results using VSB are in agreement with the experimental results,with an average error of 3.4%,which indicates that the model using VSB achieves a high accuracy.The simulation results ignoring the VSB overrate the load capacity by 16.42%and undervalue the mass flow rate by 11.29%.This study may aid in understanding the gas lubrication mechanism in PGBs and the development of novel gas lubricants.展开更多
Tilting pad gas journal bearing is one of the most widely used types of aerodynamic bearings due to its inherent excellent stability in high speed applications.A practical method for analyzing and calculating the per-...Tilting pad gas journal bearing is one of the most widely used types of aerodynamic bearings due to its inherent excellent stability in high speed applications.A practical method for analyzing and calculating the per- formances of such bearings is presented as well as its rotordynamics based on the computer aided technique.The method of calculation and the philosophy of programming with a microcomputer for the computer aided analysis are highlighted.展开更多
The dynamic performances of floating-ring bearing with hydrodynamic/hydrostatic gas lubrication are studied theoretically and some calculated charts of dynamic coefficients are given in the paper. The method of stabil...The dynamic performances of floating-ring bearing with hydrodynamic/hydrostatic gas lubrication are studied theoretically and some calculated charts of dynamic coefficients are given in the paper. The method of stability analysis is also presented and it is proved that the high speed stability of such bearings is better than other types of gas bearings.展开更多
The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. T...The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. The distribution of gas film pressure and seal performance parameters inclu- ding opening force and leakage are obtained. Influence of operating parameters and sealing configu- ration on the sealing performance is studied. HSGLNMS has been designed and manufactured. Its working film thickness and leakage are measured to verify the theoretical analysis. The investigation results show that HSGLNMS demonstrates good speed adaptability, which means that the seal runs successfully with both low and high speed, showing excellent performance. The seal can be regula- ted and controlled online ; the opening force will not be raised greatly with the increasing of the num- ber of throttle orifices, but the leakage of seal increases apparently ; the uniform pressure groove im- proves the sealing performance, for example, opening force and stiffness are raised obviously. While leakage is reduced. Finally, the theoretical analysis is verified by experiment.展开更多
To reduce the usage of classical lubricants in deep drawing,a new tribological system based on volatile lubricants was developed.Therefore,a volatile medium is injected under high pressure into the interstice between ...To reduce the usage of classical lubricants in deep drawing,a new tribological system based on volatile lubricants was developed.Therefore,a volatile medium is injected under high pressure into the interstice between drawing tool and sheet metal.Depending on temperature and pressure,the temporary lubricant may exist in its gaseous or liquid phase.In this study,a novel high fluid pressure tribometer was designed to investigate the friction and wear of dry steel contacts under comparable conditions like in dry deep drawing.Therefore,a new ball-on-disc tribometer was designed and integrated into a high-pressure vessel.To specifically investigate the effects of different environments(technical air,liquid and gaseous carbon dioxide,nitrogen,argon)at atmospheric and high pressure(0.1 MPa,6 MPa)on tribology,the specimens and all components were operating unlubricated.During the experiments,the friction was measured continuously.Results show that the highest friction occurs in air and the lowest in carbon dioxide environment.Subsequent to the experiments,the wear of the specimens was assessed along with changes in surface chemistry related to tribochemical reactions.Therefore,the tribology of the dry sliding contacts is correlated to changes of the surface chemistry.Also differences as well as similarities regarding the different fluid environments are shown.As the results show,the differences between the media used are most pronounced at elevated pressure.Concluding,this work gives clear indications on the suitability of volatile lubricants in dry friction or rather gas lubrication,especially for dry deep drawing.展开更多
This paper presents a pressure perturbation equation for the ultra-thin gas film lubrication of magnetic head-disk based on a generalized gas lubrication equation applicable to arbitrary Knudsen number. The gas film p...This paper presents a pressure perturbation equation for the ultra-thin gas film lubrication of magnetic head-disk based on a generalized gas lubrication equation applicable to arbitrary Knudsen number. The gas film pressure of Air Bearing Slider (ABS) was obtained by using the operator-splitting and finite element method. The pressure perturbation equation was solved by the finite element method with unstructured triangle grids to calculate the stiffness and damping coefficients of the gas film. Modal analysis of coupled system of magnetic head and gas film was carried out to obtain natural frequencies, damping rates and mode shapes of the magnetic head vibrations. Vibration stability of Ω-type magnetic head was predicted in this work. Numerical results indicate that the natural frequencies of the coupled system increases as the gas film thickness decreases, and the natural frequencies and damping rate of the coupled vibration modes of heave and pitch motions are much lower than those of uncoupled modes. And it is concluded that the stability of magnetic head is slightly worsened when the disk rotation speed increases.展开更多
文摘Porous gas bearings(PGBs)have a proactive application in aerospace and turbomachinery.This study investigates the gas lubrication performance of a PGB with the condition of velocity slip boundary(VSB)owing to the high Knudsen number in the gas film.The Darcy-Forchheimer laws and modified Navier-Stokes equations were adopted to describe the gas flow in the porous layer and gas film region,respectively.An improved bearing experimental platform was established to verify the accuracy of the derived theory and the reliability of the numerical analysis.The effects of various parameters on the pressure distribution,flow cycle,load capacity,mass flow rate,and velocity profile are demonstrated and discussed.The results show that the gas can flow in both directions,from the porous layer to the gas film region,or in reverse.The load capacity of the PGB increases with an increase in speed and inlet pressure and decreases with an increase in permeability.The mass flow rate increases as the inlet pressure and permeability increase.Furthermore,the simulation results using VSB are in agreement with the experimental results,with an average error of 3.4%,which indicates that the model using VSB achieves a high accuracy.The simulation results ignoring the VSB overrate the load capacity by 16.42%and undervalue the mass flow rate by 11.29%.This study may aid in understanding the gas lubrication mechanism in PGBs and the development of novel gas lubricants.
文摘Tilting pad gas journal bearing is one of the most widely used types of aerodynamic bearings due to its inherent excellent stability in high speed applications.A practical method for analyzing and calculating the per- formances of such bearings is presented as well as its rotordynamics based on the computer aided technique.The method of calculation and the philosophy of programming with a microcomputer for the computer aided analysis are highlighted.
文摘The dynamic performances of floating-ring bearing with hydrodynamic/hydrostatic gas lubrication are studied theoretically and some calculated charts of dynamic coefficients are given in the paper. The method of stability analysis is also presented and it is proved that the high speed stability of such bearings is better than other types of gas bearings.
基金Supported by the National Natural Science Foundation of China ( No. 50635010 ) and the National Key Basic Research Program of China (2012CB026000).
文摘The principle and characteristics of hydrostatic gas lubricated non-contacting mechanical seal (HSGLNMS) are introduced. The flow field of the gas film is established by numerical analysis of end faces of HSGLNMS. The distribution of gas film pressure and seal performance parameters inclu- ding opening force and leakage are obtained. Influence of operating parameters and sealing configu- ration on the sealing performance is studied. HSGLNMS has been designed and manufactured. Its working film thickness and leakage are measured to verify the theoretical analysis. The investigation results show that HSGLNMS demonstrates good speed adaptability, which means that the seal runs successfully with both low and high speed, showing excellent performance. The seal can be regula- ted and controlled online ; the opening force will not be raised greatly with the increasing of the num- ber of throttle orifices, but the leakage of seal increases apparently ; the uniform pressure groove im- proves the sealing performance, for example, opening force and stiffness are raised obviously. While leakage is reduced. Finally, the theoretical analysis is verified by experiment.
文摘To reduce the usage of classical lubricants in deep drawing,a new tribological system based on volatile lubricants was developed.Therefore,a volatile medium is injected under high pressure into the interstice between drawing tool and sheet metal.Depending on temperature and pressure,the temporary lubricant may exist in its gaseous or liquid phase.In this study,a novel high fluid pressure tribometer was designed to investigate the friction and wear of dry steel contacts under comparable conditions like in dry deep drawing.Therefore,a new ball-on-disc tribometer was designed and integrated into a high-pressure vessel.To specifically investigate the effects of different environments(technical air,liquid and gaseous carbon dioxide,nitrogen,argon)at atmospheric and high pressure(0.1 MPa,6 MPa)on tribology,the specimens and all components were operating unlubricated.During the experiments,the friction was measured continuously.Results show that the highest friction occurs in air and the lowest in carbon dioxide environment.Subsequent to the experiments,the wear of the specimens was assessed along with changes in surface chemistry related to tribochemical reactions.Therefore,the tribology of the dry sliding contacts is correlated to changes of the surface chemistry.Also differences as well as similarities regarding the different fluid environments are shown.As the results show,the differences between the media used are most pronounced at elevated pressure.Concluding,this work gives clear indications on the suitability of volatile lubricants in dry friction or rather gas lubrication,especially for dry deep drawing.
基金the National Natural Science Foundation of China (Grant No: 10072022)
文摘This paper presents a pressure perturbation equation for the ultra-thin gas film lubrication of magnetic head-disk based on a generalized gas lubrication equation applicable to arbitrary Knudsen number. The gas film pressure of Air Bearing Slider (ABS) was obtained by using the operator-splitting and finite element method. The pressure perturbation equation was solved by the finite element method with unstructured triangle grids to calculate the stiffness and damping coefficients of the gas film. Modal analysis of coupled system of magnetic head and gas film was carried out to obtain natural frequencies, damping rates and mode shapes of the magnetic head vibrations. Vibration stability of Ω-type magnetic head was predicted in this work. Numerical results indicate that the natural frequencies of the coupled system increases as the gas film thickness decreases, and the natural frequencies and damping rate of the coupled vibration modes of heave and pitch motions are much lower than those of uncoupled modes. And it is concluded that the stability of magnetic head is slightly worsened when the disk rotation speed increases.