期刊文献+
共找到16篇文章
< 1 >
每页显示 20 50 100
Stress-unloading and gas migration improvement mechanism in the soft and hard interbedded coal seam using directional hydraulic flushing technology
1
作者 Hao Zhang Yuanping Cheng +5 位作者 Cunbao Deng Jingyu Jiang Lei Zhang Xiaoyu Yan Junwei Guo Suifang Wang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第9期1165-1179,共15页
To enhance gas drainage in the soft and hard interbedded(SHI)coal seam,it’s necessary to unload the insitu stress and improve its gas migration performance.In this research,a directional hydraulic flushing(DHF)techno... To enhance gas drainage in the soft and hard interbedded(SHI)coal seam,it’s necessary to unload the insitu stress and improve its gas migration performance.In this research,a directional hydraulic flushing(DHF)technology was carried out.The stress-unloading and gas migration improvement mechanism was analyzed through numerical simulation,and systematic engineering tests were conducted to verify the gas drainage effect.The results show that the improvement of gas migration performance in the SHI coal seam is caused by a combined effect of seepage-improving and diffusion-improving.After DHF,stress-unloading and plastic failure could be achieved both in the soft coal(SC)sublayer and in the hard coal(HC)sublayer.However,the gas diffusion capacity improves significantly in the SC sublayer,while the gas seepage capacity improves notably in the HC sublayer.Meanwhile,the stress-unloading and gas migration improvement effect improves with the flushing radius and the thickness of the SC sublayer.Besides,after adopting the DHF technology,the gas drainage effect improved markedly.The borehole number dropped by 49%,the gas drainage ratio increased from 26.0%to 48.2%,and the average coal roadway excavation speed increased from 2.4 to 5.6 m/d. 展开更多
关键词 Hydraulic flushing Stress-unloading Plastic failure Permeability-increasing gas migration
下载PDF
Saturated hydraulic conductivity of compacted bentonite-sand mixtures before and after gas migration in artificial seawater
2
作者 Yasutaka Watanabe Shingo Yokoyama +2 位作者 Misato Shimbashi Yoichi Yamamoto Takahiro Goto 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期216-226,共11页
To understand the self-healing property of an engineered barrier for radioactive waste disposal,the hydraulic conductivity of compacted bentoniteesand mixtures saturated with artificial seawater(SW)before and after ga... To understand the self-healing property of an engineered barrier for radioactive waste disposal,the hydraulic conductivity of compacted bentoniteesand mixtures saturated with artificial seawater(SW)before and after gas migration was examined.Na-and Ca-bentonites were mixed with fine sand at a ratio of 70%bentonite in dry weight.Two aspects were considered during the experiment:the hydraulic conductivity of the specimen that was resaturated after gas migration and the distribution of water content immediately after gas migration to study gas migration pathways.The gas migrated through the entire cross-section of the specimen,and gas breakthrough occurred in the equilibrium swelling pressure range approximately.Subsequently,the gas flow rate reached a sufficient large value when the gas pressure was approximately twice the equilibrium axial pressure(the sum of swelling and confining pressures),which excluded the back pressure.Although the gas migration pathway was not visible when the specimen was observed immediately after gas migration,the water content distribution showed that several parts of the specimen with lower water content were connected in the direction of gas migration.After resaturation,the change in permeability was within a limited rangedtwo to three times larger than that before gas migration for each type of bentonite in SW.This slight change suggests that gas migration creates a pore structure that cannot be sealed via crystalline swelling of montmorillonite in SW,even if highly compacted bentonite is used under a constant-volume condition. 展开更多
关键词 BENTONITE gas migration Hydraulic conductivity Seawater(SW) SELF-HEALING
下载PDF
Simulation of dilatancy-controlled gas migration processes in saturated bentonite using a coupled multiphase flow and elastoplastic H2 M model
3
作者 Eike Radeisen Hua Shao +3 位作者 Jürgen Hesser Olaf Kolditz Wenjie Xu Wenqing Wang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期803-813,共11页
Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow... Dilatancy-controlled gas flow in preferential pathways plays a key role in the safety analysis of radioactive waste repositories.This is particularly the case for bentonite,an often-preferred barrier material.Gas flow in preferential pathways is characterized by localization and spontaneous behavior,which is challenging to simulate in numerical models due to strong hydro-mechanical coupling.To analyze a laboratory experiment in the framework of the DECOVALEX-2023 project,this study introduced a new approach of combining continuous modelling methods with spatial material properties derived from material heterogeneities and experimental observations.The proposed model utilized hydro-mechanical spatial distributions,namely Young’s modulus and gas entry pressure,and elastoplasticity combined with a linear swelling model.A conceptual strain-dependent permeability approach simulated dilatancycontrolled gas flow based on hydro-mechanical coupling.To test the effectiveness of the presented approach,a gas injection test in a compacted,saturated bentonite sample was simulated using the opensource code OpenGeoSys 5.8 and compared with experimental observations.The presented methodology is capable of simulating localized gas flow in preferential pathways.The spatial distributions of Young’s modulus and gas entry pressure affect the swelling pressure,relative permeability and,in combination with the strain-dependent permeability model,also the intrinsic permeability. 展开更多
关键词 H^(2)M coupling gas migration Dilatancy-controlled flow Continuous approach Geomaterial heterogeneity OPENGEOSYS
下载PDF
Numerical simulation of gas migration into mining-induced fracture network in the goaf 被引量:8
4
作者 Cao Jie Li Wenpu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期681-685,共5页
Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extra... Gas extraction practice has been proven for the clear majority of coal mines in China to be unfavorable using drill holes in the coal seam. Rather, mining-induced fractures in the goaf should be utilized for gas extraction. To study gas migration in mining-induced fractures, one mining face of 10 th Mine in Pingdingshan Coalmine Group in Henan, China, has been selected as the case study for this work. By establishing the mathematical model of gas migration under the influence of coal seam mining, discrete element software UDEC and Multiphysics software COMSOL are employed to model gas migration in mining-induced fractures above the goaf. The results show that as the working face advances, the goaf overburden gradually forms a mining-induced fracture network in the shape of a trapezoid, the size of which increases with the distance of coal face advance. Compared with gas migration in the overburden matrix, the gas flow in the fracture network due to mining is far greater. The largest mining-induced fracture is located at the upper end of the trapezoidal zone, which results in the largest gas flux in the network. When drilling for gas extraction in a mining-induced fracture field, the gas concentration is reduced in the whole region during the process of gas drainage, and the rate of gas concentration drops faster in the fractured zone. It is shown that with gas drainage, the gas flow velocity in the mininginduced fracture network is faster. 展开更多
关键词 gas migration FRACTURES Mining-induced Numerical simulation
下载PDF
Geochemical characteristics of noble gases in natural gas and their application in tracing natural gas migration in the middle part of the western Sichuan Depression, China 被引量:7
5
作者 Wang Peng Shen Zhongmin +3 位作者 Liu Sibing Lv Zhengxiang Zhu Tong Gong Yajun 《Petroleum Science》 SCIE CAS CSCD 2013年第3期327-335,共9页
Noble gases in natural gas, from Xiaoquan, Xinchang, Hexingchang and Fenggu gas reservoirs in the middle part of the western Sichuan Depression, China, were analysed. Results show that the volume content of crustal no... Noble gases in natural gas, from Xiaoquan, Xinchang, Hexingchang and Fenggu gas reservoirs in the middle part of the western Sichuan Depression, China, were analysed. Results show that the volume content of crustal noble gases accounts for 97.9% to 99.7% of the total noble gas content, indicating that the noble gases in the study area are very largely derived from the crust. Moreover, the 40Ar time-accumulating effect of source rocks is used to determine the complex relationship between gases and source rocks in this area, and the results agree well with that from analysis of source rock light hydrocarbons. Due to the short migration distance, the separation of 4He and 40Ar is not significant in Xujiahe natural gas and Lower and Middle Jurassic natural gas, so it is difficult to trace natural gas migration. However, this separation characteristic of 4He and 40Ar in Middle and Upper Jurassic natural gas is significant, which indicates that natural gas migration was from the Middle Jurassic to Upper Jurassic formations. In addition, the variation trends of 3He/4He ratio and δ13C1 value indicates that natural gas migration is from the Xujiahe formation to the Jurassic layer in the study area. 展开更多
关键词 Western Sichuan Depression noble gas He and Ar isotopes natural gas migration
下载PDF
Oil/Gas Migration and Aggregation in Intra-Continental Orogen Based on Numerical Simulation: A Case Study from the Dabashan Orocline, Central China 被引量:2
6
作者 施炜 武红岭 +1 位作者 董树文 田蜜 《Journal of Earth Science》 SCIE CAS CSCD 2013年第2期254-261,共8页
Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migr... Geofluid, driven by tectonic stress, can migrate and aggregate in geological body. Thus, numerical simulation has been widely used to rebuild paleo-tectonic stress field and probe oil/gas (one type of geofluid) migration and aggregation. Based on geological mapping, structural data, and mechanical parameters of rocks, we reconstruct the traces for gas/oil migration and aggregation in Dabashan intra-continental orogen using numerical simulation. The study shows that gas/oil, obviously dominated by late Middle Jurassic-Early Cretaceous paleo-tectonic stress field that is characterized by NE-SW shortening in the Dabashan thrust belt and SW-emanating shortening in its foreland belt, massively migrate from the Dabashan thrust belt to its foreland belt, that is, NE to SW, resulting in the formation of some probable favorable areas for oil/gas mainly along the Tiexi -Wuxi fault, in some superposed structure (e.g., Zhenba , Wanyuan , Huangjinkou , and Tongnanba areas), and in the Zigui Basin. Thus, our study shows that numerical simulation can be effectively applied to study oil/gas migration and aggregation in intra-continental orogen and provided some significant evidences for oil/gas exploration. 展开更多
关键词 Dabashan orocline intra-continentai orogen numerical simulation paleo-tectonic stress field oil/gas migration and aggregation oil/gas exploration.
原文传递
Research progress on isotopic fractionation in the process of shale gas/coalbed methane migration 被引量:1
7
作者 LI Wenbiao LU Shuangfang +6 位作者 LI Junqian WEI Yongbo ZHAO Shengxian ZHANG Pengfei WANG Ziyi LI Xiao WANG Jun 《Petroleum Exploration and Development》 CSCD 2022年第5期1069-1084,共16页
The research progress of isotopic fractionation in the process of shale gas/coalbed methane migration has been reviewed from three aspects: characteristics and influencing factors, mechanism and quantitative character... The research progress of isotopic fractionation in the process of shale gas/coalbed methane migration has been reviewed from three aspects: characteristics and influencing factors, mechanism and quantitative characterization model, and geological application. It is found that the isotopic fractionation during the complete production of shale gas/coalbed methane shows a four-stage characteristic of “stable-lighter-heavier-lighter again”, which is related to the complex gas migration modes in the pores of shale/coal. The gas migration mechanisms in shale/coal include seepage, diffusion, and adsorption/desorption. Among them, seepage driven by pressure difference does not induce isotopic fractionation, while diffusion and adsorption/desorption lead to significant isotope fractionation. The existing characterization models of isotopic fractionation include diffusion fractionation model, diffusion-adsorption/desorption coupled model, and multi-scale and multi-mechanism coupled model. Results of model calculations show that the isotopic fractionation during natural gas migration is mainly controlled by pore structure, adsorption capacity, and initial/boundary conditions of the reservoir rock. So far, the isotope fractionation model has been successfully used to evaluate critical parameters, such as gas-in-place content and ratio of adsorbed/free gas in shale/coal etc. Furthermore, it has shown promising application potential in production status identification and decline trend prediction of gas well. Future research should focus on:(1) the co-evolution of carbon and hydrogen isotopes of different components during natural gas migration,(2) the characterization of isotopic fractionation during the whole process of gas generation-expulsion-migration-accumulation-dispersion, and(3) quantitative characterization of isotopic fractionation during natural gas migration in complex pore-fracture systems and its application. 展开更多
关键词 shale gas coalbed methane diffusive fractionation adsorption/desorption fractionation isotope fractionation model natural gas migration
下载PDF
Complex genesis of multiperiod fractures in the Middle Triassic Leikoupo Formation in the Pengzhou gas field, western Sichuan Basin, China 被引量:1
8
作者 Xiao-Fei Hu Hu-Cheng Deng +2 位作者 Jian-Hua He Zhong-Min Shen Xian-Feng Peng 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期161-176,共16页
The cumulative expression of multistage deformation is complex multiperiod fractures,which are commonly seen in tectonic zones.The Middle Triassic Leikoupo Formation in the western Sichuan Basin Depression,China,is a ... The cumulative expression of multistage deformation is complex multiperiod fractures,which are commonly seen in tectonic zones.The Middle Triassic Leikoupo Formation in the western Sichuan Basin Depression,China,is a typical marine carbonate reservoir with natural fractures caused mainly by tectonic movements.According to outcrops,drill cores,image logging,and fluid inclusions,the fracture characteristics,types of natural fractures,and interactions of fractures are determined.In total,419 natural fractures in 493.2 m of cores from 7 wells are investigated,which are mainly shear and tensile fractures with a small number of weathering generated fractures.Meanwhile,the results of the stable isotope analysis of δ13C and δ18O,as well as the flow fluid inclusion data,reveal four tectonic periods of fractures with different occurrences.Based on the history of regional tectonic evolution,indicating one period of weathering fractures ascribable to stratal uplift and three periods of structural fractures related to the sequential tectonic movements of the Longmenshan fault belt.By analyzing the interaction relationships of fractures,three types of fracture interaction relationships are observed:cutting,restraining,and overlapping.The four stages fractures are chronologically assigned to(1)the early Indosinian N-S trending compression,(2)the late Indosinian NW-SE compression,(3)the middle Yanshanian NE-SE compression,and(4)the early Himalayan E-W compression.The influence of natural fractures on gas migration and well production in marine carbonates is discussed,and indicates that tectonic fractures could provide seepage channels for gas migration and accumulation from near or distant hydrocarbon source rocks into the Middle Triassic Leikoupo Formation.This study utilizes a pragmatic approach for understanding the fracture genesis mechanism in oil and gas field with multiperiod fractures. 展开更多
关键词 Multiperiod fractures Interaction relationships Genesis mechanism gas migration Leikoupo formation Sichuan basin
下载PDF
Effect of hydrophilic silica nanoparticles on hydrate formation during methane gas migration in a simulated wellbore
9
作者 Meng Xu Xiangyu Fang +3 位作者 Fulong Ning Wenjia Ou Ling Zhang Dongdong Wang 《Petroleum》 CSCD 2021年第4期485-495,共11页
Natural gas hydrates are mostly formed in low-permeability and fractured muddy sedimentary formations.Adding suitable nanoparticles to the drilling fluid system can improve its filtrate resistance and fracture pluggin... Natural gas hydrates are mostly formed in low-permeability and fractured muddy sedimentary formations.Adding suitable nanoparticles to the drilling fluid system can improve its filtrate resistance and fracture plugging,and effectively weaken the invasion of drilling fluid into the reservoir.However,it is likely that nanoparticles promote hydrate formation and accumulation in wellbores which will induce accidents.Therefore,this study investigated the effect of hydrophilic silica nanoparticles with particle sizes of 30 nm,60 nm,and 80 nm and concentrations of 0.5e4.0 wt%on hydrate formation during upward migration of methane gas using a dynamic simulation system for hydrate formation in a wellbore.The experimental results show that under the condition of methane gas migration,hydrophilic silica nanoparticles inhibit hydrate formation.The inhibition effect increased with the growth in the particle size under a constant concentration,whereas it first increased and then decreased with increasing nanoparticle concentration under a constant particle size.The strongest inhibition effect was observed at a hydrophilic silica nanoparticle concentration of 2.0 wt%.The influence of hydrophilic silica nanoparticles on hydrate formation may be mainly determined by their hydrophilic properties,heat and mass transfer,and gas migration in the wellbore.Our research indicates that hydrophilic silica nanoparticles can be added to hydrate drilling fluid systems if their concentration can be properly controlled. 展开更多
关键词 Natural gas hydrate Drilling fluid Hydrophilic silica nanoparticles Methane gas migration
原文传递
Migration and accumulation characteristics of natural gas hydrates in the uplifts and their slope zones in the Qiongdongnan Basin,China 被引量:1
10
作者 Yu-lin He Jin-qiang Liang +5 位作者 Zeng-gui Kuang Wei Deng Jin-feng Ren Hong-fei Lai Miao-miao Meng Wei Zhang 《China Geology》 2022年第2期234-250,共17页
Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteri... Various factors controlling the accumulation of natural gas hydrates(NGHs)form various enrichment and accumulation modes through organic combination.This study mainly analyzes the geological and geophysical characteristics of the NGHs occurrence in the uplifts and their slope zones within the deep-water area in the Qiongdongnan(QDN)Basin(also referred to as the study area).Furthermore,it investigates the dominant governing factors and models of NGHs migration and accumulation in the study area.The results are as follows.(1)The uplifts and their slope zones in the study area lie in the dominant pressure-relief direction of fluids in central hydrocarbon-rich sags in the area,which provide sufficient gas sources for the NGHs accumulation and enrichment through pathways such as gas chimneys and faults.(2)The top and flanks of gas chimneys below the bottom simulating reflectors(BSRs)show high-amplitude seismic reflections and pronounced transverse charging of free gas,indicating the occurrence of a large amount of gas accumulation at the heights of the uplifts.(3)Chimneys,faults,and high-porosity and high-permeability strata,which connect the gas hydrate temperature-pressure stability zones(GHSZs)with thermogenic gas and biogenic gas,form the main hydrate migration system.(4)The reservoir system in the study area comprises sedimentary interlayers consisting of mass transport deposits(MTDs)and turbidites.In addition,the reservoir system has developed fissure-and pore-filling types of hydrates in the pathways.The above well-matched controlling factors of hydrate accumulation enable the uplifts and their slope zones in the study area to become the favorable targets of NGHs exploration. 展开更多
关键词 gas chimney OVERPRESSURE migration characteristics of gas hydrates Accumulation characteristics of gas hydrates Oil and gas exploration engineering NGHs exploration trial engineering Uplifts and slope zones Qiongdongnan Basin China
下载PDF
Calculation analysis of sustained casing pressure in gas wells 被引量:12
11
作者 Zhu Hongjun Lin Yuanhua +2 位作者 Zeng Dezhi Zhang Deping Wang Feng 《Petroleum Science》 SCIE CAS CSCD 2012年第1期66-74,共9页
Sustained casing pressure (SCP) in gas wells brings a serious threat to worker safety and environmental protection. According to geological conditions, wellbore structure and cement data of gas wells in the Sichuan-... Sustained casing pressure (SCP) in gas wells brings a serious threat to worker safety and environmental protection. According to geological conditions, wellbore structure and cement data of gas wells in the Sichuan-Chongqing region, China, the position, time, environmental condition and the value of SCP have been analyzed. On this basis, the shape of the pressure bleed-down plot and pressure buildup plot were diagnosed and the mechanism of SCP has been clarified. Based on generalized annular Darcy percolation theory and gas-liquid two-phase fluid dynamics theory, a coupled mathematical model of gas migration in a cemented annulus with a mud column above the cement has been developed. The volume of gas migrated in the annulus and the value of SCP changing with time in a gas well in Sichuan have been calculated by this model. Calculation results coincided well with the actual field data, which provide some reference for the following security evaluation and solution measures of SCP. 展开更多
关键词 Sustained casing pressure gas migration coupled mathematic model gas well
下载PDF
Experiment and analysis of the formation,expansion and dissipation of gasbag in fine sediments based on pore water pressure survey
12
作者 Shiyun Lei Xiujun Guo Haoru Tang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第4期91-100,共10页
Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is impor... Deep-seated gas in seabed sediments migrates upwards from effect of external factors,which easily accumulates to form gasbags at interface of shallow coarse-fine sediments.Real-time monitoring of this process is important to predict disaster.However,there is still a lack of effective monitoring methods,so we attempt to apply multi-points pore water pressure monitoring technology when simulating forming and dissipation of gasbags in sediments through laboratory experiment.This study focuses on discussion of sensitivity of pore water pressure monitoring data,as well as typical changing characteristics and mechanisms of excess pore water pressure corresponding to crack generation,gasbag formation and gas release.It was found that the value of excess pore water pressure in sediments is negatively correlated with vertical distance between sensors and gas source,and the evolution of gasbag forming and dissipation has a good corresponding relationship with the change of excess pore water pressure.Gasbag formation process is divided into three stages:transverse crack development,longitudinal cavity expansion,and oblique crack development.Formation of gasbag begins with the transverse crack at the interface of coarse-fine sediments while excess pore water pressure attenuates rapidly and then drops,pressure remains almost unchanged when cavity expanses longitudinally,oblique crack appeared in final stage of gasbag evolution while excess pore water pressure accumulated and dissipated again.The variation curve of excess pore water pressure in gas release stage has saw-tooth fluctuation characteristics,and the value and time of pressure accumulation are also fluctuating,indicating the uncertainty and non-uniqueness of gas migration channels in sediments. 展开更多
关键词 pore water pressure monitoring technology excess pore water pressure gasbag cracks gas migration
下载PDF
Features of the fault system and its relationship with migration and accumulation of hydrocarbon in Liaodong Bay 被引量:8
13
作者 Xu Guosheng Ma Ruolong +5 位作者 Gong Deyu Zhou Donghong Li Jianping Guo Yonghua Yuan Haifeng Wu Changrong 《Petroleum Science》 SCIE CAS CSCD 2011年第3期251-263,共13页
The fault system of Liaodong Bay developed extensively under the control of the Tanlu Fault. The fault system can be grouped into strike-slip faults of grade Ⅰ, trunk faults of grade Ⅱand branch faults (induced fau... The fault system of Liaodong Bay developed extensively under the control of the Tanlu Fault. The fault system can be grouped into strike-slip faults of grade Ⅰ, trunk faults of grade Ⅱand branch faults (induced faults) of grade Ⅲ respectively based on its developmental scale. The faults of grade Ⅰ and Ⅱwere deep, early and large while the faults of grade Ⅲwere shallow, late and small. The formation, evolution and distribution features played a significant role in controlling the migration of oil and gas in both horizontal and vertical directions. The fluid transfer in the fault system occurred in the process of faulting. The strike-slip and trunk faults moved actively forming predominant pathways for oil and gas migration. The branch faults, with weak activity, generally controlled the development of traps and were beneficial for the accumulation and preservation of oil and gas. The faults of grade Ⅰ and Ⅱ formed the major migration pathways for oil and gas, but their fault activity rates appeared to vary along their strikes. The zones with a relatively low fault activity rate might be favorable for oil and gas accumulation. When the activities of strike-slip, trunk, and branch faults came to a halt, the fault seal behavior had a vitally important effect on the accumulation of oil and gas. The controlling role of the fault over fluid distribution was further analyzed by calculating the fault activity quantitatively. 展开更多
关键词 Liaodong Bay fault system fault activity rate fault seal behavior migration andaccumulation of oil and gas
下载PDF
Different Hydrocarbon Accumulation Histories in the Kelasu-Yiqikelike Structural Belt of the Kuqa Foreland Basin 被引量:9
14
作者 WANG Zhaoming LONG Huashan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第5期1195-1208,共14页
The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up... The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up to the present. Natural gases in the Kelasu district and the Yinan district are generated from different source rocks indicated by methane and ethane carbon isotopes. The former is derived from both Jurassic and Triassic source rocks, while the latter is mainly from the Jurassic. Based on its multistage evolution and superposition and the intense tectonic transformation in the basin, the hydrocarbon charging history can be divided into the early and middle Himalayan hydrocarbon accumulation and the late Himalayan redistribution and re-enrichment. The heavier carbon isotope composition and the high natural gas ratio of C1/C1-4 indicate that the accumulated natural gas in the early Himalayan stage is destroyed and the present trapped natural gas was charged mainly in the middle and late Himalayan stages. Comparison and contrast of the oils produced in the Kelasu and Yinan regions indicate the hydrocarbon charging histories in the above two regions are complex and should be characterized by multistage hydrocarbon migration and accumulation. 展开更多
关键词 natural gas geochemistry natural gas migration and accumulation Kuqa depression
下载PDF
Thermo-hydro-mechanical behavior of clay rock for deep geological disposal of high-level radioactive waste 被引量:6
15
作者 Chun-Liang Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 CSCD 2018年第5期992-1008,共17页
In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investi... In the context of deep geological disposal of radioactive waste in clay formations, the thermo-hydro- mechanical (THM) behavior of the indurated Callovo-Oxfordian and Opalinus clay rocks has been extensively investigated in our laboratory under repository relevant conditions: (1) rock stress covering the range from the lithostatic state to redistributed levels after excavation; (2) variation of the humidity in the openings due to ventilation as well as hydraulic drained and undrained boundary conditions; (3) gas generation from corrosion of metallic components within repositories; and (4) thermal loading from high-level radioactive waste up to the designed maximum temperature of 90 ~C and even beyond to 150 ~C, Various important aspects concerning the long-term barrier functions of the clay host rocks have been studied: (1) fundamental concept for effective stress in the porous clay-water system; (2) stress- driven deformation and damage as well as resulting permeability changes; (3) moisture influences on mechanical properties; (4) self-sealing of fractures under mechanical load and swelling]slaking of clay minerals upon water uptake; (5) gas migration in fractured and resealed claystones; and (6) thermal impact on the hydro-mechanical behavior and properties, Major findings from the investigations are summarized in this paper, 展开更多
关键词 REPOSITORY Clay rock DEFORMABILITY SWELLING SELF-SEALING Water permeability gas migration Thermal impact
下载PDF
The hydrogenmigration in cryogenic tubes of superconductive accelerator with gas source
16
作者 Chuanfei Hu Feng Bai +3 位作者 Wanhong Guo Yukui Yin Yugang Zhao Junhui Zhang 《Radiation Detection Technology and Methods》 CSCD 2019年第2期8-14,共7页
Background In superconductive linear accelerator,the performance and stability can be impacted by gas adsorbed on cryogenic surfaces adversely.The cryogenic devices usually work at 4.2 K or 1.9 K and are refrigerated ... Background In superconductive linear accelerator,the performance and stability can be impacted by gas adsorbed on cryogenic surfaces adversely.The cryogenic devices usually work at 4.2 K or 1.9 K and are refrigerated by normal or super fluid liquid helium,respectively.Purpose The purpose of this paper is to study the character of gas migration in cryogenic tubes.Method Adsorption coefficient for hydrogen at 4.2 K is measured by experimental study.Then,a gas migration model is established based on the experimental results to depict the hydrogen migration process in cryogenic tubes.Results The experimental results and model analysis indicated that at cryogenic temperature(4.2 K),adsorption coefficient for hydrogen is very close to 1,which is several orders higher than the adsorption coefficient at room temperature,resulting in a unique pressure distribution pattern in cryogenic tubes when compared with the pressure distribution in room temperature tubes.Conclusions At 4.2 K or 1.9 K,the gas migration process is obviously different from the process at room temperature and is significantly affected by the gas adsorption on the cryogenic surfaces.The model established in this article can be applied not only to hydrogen migration in cryogenic tubes but also to other gas migration in tubes with high adsorption coefficient. 展开更多
关键词 VACUUM CRYOGENIC gas migration Superconductive accelerator
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部