Four potentiometer sensor cells have been prepared by using La0.95Pb0.05F2.95 as solid electrolyte(SE) and various materials as electrodes. The sensor cell `Bi(BiF3)|SE|Pt' exhibits the best performance with its 9...Four potentiometer sensor cells have been prepared by using La0.95Pb0.05F2.95 as solid electrolyte(SE) and various materials as electrodes. The sensor cell `Bi(BiF3)|SE|Pt' exhibits the best performance with its 90% response time as short as 75 s to 100 Pa H2 in air at room temperature and with its linear decrease of electromotive force (EMF) with an increase of the logarithm of hydrogen partial pressure in the experimental range. The sensor cell shows weaker response to CO.展开更多
Simple and efficient surface acoustic wave (SAW) two-port resonators with low insertion loss and high Q-values on ST-X quartz substrate using a corrosion-proof A1/Au-stripe electrode structure are developed for gas ...Simple and efficient surface acoustic wave (SAW) two-port resonators with low insertion loss and high Q-values on ST-X quartz substrate using a corrosion-proof A1/Au-stripe electrode structure are developed for gas sensing. It was composed of two shorted grating reflectors and adjacent intedigital transducers (IDT), and an active metal film in the cavity between the IDTs for the sensitive film coating. The devices are expected to provide good protection towards metal electrode for gas sensors application in chemically reactive environments. Excellent device performance as low insertion loss, high Q factor and single-mode are achieved by carefully selecting the metallic electrode thickness, cavity length and acoustic aperture. Prior to fabrication, the coupling of modes (COM) model was performed for device simulation to determine the optimal design parameters. The fabricated single-mode SAW resonator at operation frequency of 300 MHz range exhibits matched insertion loss of ~6.5 dB and loaded Q factor in the 3000 range. Using the fabricated resonator as the feedback element, a duaresonator-oscillator with excellent frequency stability (0.1 ppm) was developed and evaluated experimentally, and it is significant for performance improvement of SAW gas sensor.展开更多
基金This project was supported by the National Natural Science Foundation of China Laboratory of Rare Earth Chemistry and Physics,Chinese Academy of Sciences
文摘Four potentiometer sensor cells have been prepared by using La0.95Pb0.05F2.95 as solid electrolyte(SE) and various materials as electrodes. The sensor cell `Bi(BiF3)|SE|Pt' exhibits the best performance with its 90% response time as short as 75 s to 100 Pa H2 in air at room temperature and with its linear decrease of electromotive force (EMF) with an increase of the logarithm of hydrogen partial pressure in the experimental range. The sensor cell shows weaker response to CO.
基金supported by the National Nature Science Foundation of China(11074268,10834010)
文摘Simple and efficient surface acoustic wave (SAW) two-port resonators with low insertion loss and high Q-values on ST-X quartz substrate using a corrosion-proof A1/Au-stripe electrode structure are developed for gas sensing. It was composed of two shorted grating reflectors and adjacent intedigital transducers (IDT), and an active metal film in the cavity between the IDTs for the sensitive film coating. The devices are expected to provide good protection towards metal electrode for gas sensors application in chemically reactive environments. Excellent device performance as low insertion loss, high Q factor and single-mode are achieved by carefully selecting the metallic electrode thickness, cavity length and acoustic aperture. Prior to fabrication, the coupling of modes (COM) model was performed for device simulation to determine the optimal design parameters. The fabricated single-mode SAW resonator at operation frequency of 300 MHz range exhibits matched insertion loss of ~6.5 dB and loaded Q factor in the 3000 range. Using the fabricated resonator as the feedback element, a duaresonator-oscillator with excellent frequency stability (0.1 ppm) was developed and evaluated experimentally, and it is significant for performance improvement of SAW gas sensor.