This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o...This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.展开更多
In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small...In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving.展开更多
Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of ...Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of gas-water flowing law of multi-cycle relative permeability hysteresis and differential utilization in zones, the extreme utilization theory targeting at the maximum amount of stored gas, maximum injection-production capacity and maximum efficiency in space utilization is proposed to support the three-in-one evaluation method of the maximum pressure-bearing capacity of geological body, maximum well production capacity and maximum peak shaving capacity of storage space. This study realizes the full potential of gas storage(storage capacity) at maximum pressure, maximum formation-wellbore coordinate production, optimum well spacing density match with finite-time unsteady flow, and peaking shaving capacity at minimum pressure, achieving perfect balance between security and capacity. Operation in gas storages, such as Hutubi in Xinjiang, Xiangguosi in Xinan, and Shuang6 in Liaohe, proves that extreme utilization theory has promoted high quality development of gas storages in China.展开更多
In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-...In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.展开更多
Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for opti...Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.展开更多
As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternative...As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternatives Planning System(LEAP) model was improved by using new parameters including comprehensive energy efficiency and terminal effective energy consumption. The Back Propagation(BP) Neural Network–LEAP model was proposed to predict key data such as total primary energy consumption, energy mix, carbon emissions from energy consumption, and natural gas consumption in China. Moreover, natural gas production in China was forecasted by the production composition method. Finally, based on the forecast results of natural gas supply and demand, suggestions were put forward on the development of China’s natural gas industry under the background of “Dual Carbon Targets”. The research results indicate that under the background of carbon peak and carbon neutrality, China’s primary energy consumption will peak(59.4×10^(8)tce) around 2035, carbon emissions from energy consumption will peak(103.4×10^(8)t) by 2025, and natural gas consumption will peak(6100×10^(8)m^(3)) around 2040, of which the largest increase will be contributed by the power sector and industrial sector. China’s peak natural gas production is about(2800–3400)×10^(8)m^(3), including(2100–2300)×10^(8)m^(3)conventional gas(including tight gas),(600–1050)×10^(8)m^(3)shale gas, and(150–220)×10^(8)m^(3)coalbed methane. Under the background of carbon peak and carbon neutrality, the natural gas consumption and production of China will further increase, showing a great potential of the natural gas industry.展开更多
Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, ...Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, battery technologies are desirable energy storage devices for GLEES due to their easy modularization, rapid response, flexible installation, and short construction cycles. In general, battery energy storage technologies are expected to meet the requirements of GLEES such as peak shaving and load leveling, voltage and frequency regulation, and emergency response, which are highlighted in this perspective. Furthermore, several types of battery technologies, including lead–acid, nickel–cadmium, nickel–metal hydride, sodium–sulfur, lithium-ion, and flow batteries, are discussed in detail for the application of GLEES. Moreover, some possible developing directions to facilitate efforts in this area are presented to establish a perspective on battery technology, provide a road map for guiding future studies, and promote the commercial application of batteries for GLEES.展开更多
In order to alleviate the shortage of natural gas supply in winter,relevant policies have been issued to promote the construction of gas peak-shaving and storage facilities.Largescale gas storage can transfer the supp...In order to alleviate the shortage of natural gas supply in winter,relevant policies have been issued to promote the construction of gas peak-shaving and storage facilities.Largescale gas storage can transfer the supply-demand relationship of natural gas in time sequence,which has great potential in improving the economy and reliabillity of urban multi-energy flow systems.Addressing this issue,this paper proposes a mid-and long-term energy optimization method for urban multi-energy flow system that considers seasonal peak shaving of natural gas.First,the energy supply and demand features of different energy subsystems are analyzed.Then,a network model of the electricity-gas-heat multi-energy flow system is established.Considering the time-of-use electricity price mechanism and the seasonal fluctuations of the natural gas price,a mid-and long-term energy optimization model maximizing the annual economic revenue is established.The alternative direction multiplier method with Gaussian back substitution(ADMM-GBS)algorithm is used to solve the optimal dispatch model.Finally,the proposed method is verified by employing the actual data of the demonstration zone in Yangzhong City,China.The simulation results show that the proposed method is effective.展开更多
基金supported by the State Grid Science and Technology Project (No.52999821N004)。
文摘This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.
文摘In renewable energy systems,energy storage systems can reduce the power fluctuation of renewable energy sources and compensate for the prediction deviation.However,if the renewable energy prediction deviation is small,the energy storage system may work in an underutilized state.To efficiently utilize a renewable-energy-sided energy storage system(RES),this study proposed an optimization dispatching strategy for an energy storage system considering its unused capacity sharing.First,this study proposed an unused capacity-sharing strategy for the RES to fully utilize the storage’s unused capacity and elevate the storage’s service efficiency.Second,RES was divided into“deviation-compensating energy storage(DES)”and“sharing energy storage(SES)”to clarify the function of RES in the operation process.Third,this study established an optimized dispatching model to achieve the lowest system operating cost wherein the unused capacity-sharing strategy could be integrated.Finally,a case study was investigated,and the results indicated that the proposed model and algorithm effectively improved the utilization of renewable-energy-side energy storage systems,thereby reducing the total operation cost and pressure on peak shaving.
基金Supported by the PetroChina Scientific Research and Technology Development Project (2022DJ83)。
文摘Based on more than 20-year operation of gas storages with complex geological conditions and a series of research findings, the pressure-bearing dynamics mechanism of geological body is revealed. With the discovery of gas-water flowing law of multi-cycle relative permeability hysteresis and differential utilization in zones, the extreme utilization theory targeting at the maximum amount of stored gas, maximum injection-production capacity and maximum efficiency in space utilization is proposed to support the three-in-one evaluation method of the maximum pressure-bearing capacity of geological body, maximum well production capacity and maximum peak shaving capacity of storage space. This study realizes the full potential of gas storage(storage capacity) at maximum pressure, maximum formation-wellbore coordinate production, optimum well spacing density match with finite-time unsteady flow, and peaking shaving capacity at minimum pressure, achieving perfect balance between security and capacity. Operation in gas storages, such as Hutubi in Xinjiang, Xiangguosi in Xinan, and Shuang6 in Liaohe, proves that extreme utilization theory has promoted high quality development of gas storages in China.
文摘In the electrical energy transformation process,the grid-level energy storage system plays an essential role in balancing power generation and utilization.Batteries have considerable potential for application to grid-level energy storage systems because of their rapid response,modularization,and flexible installation.Among several battery technologies,lithium-ion batteries(LIBs)exhibit high energy efficiency,long cycle life,and relatively high energy density.In this perspective,the properties of LIBs,including their operation mechanism,battery design and construction,and advantages and disadvantages,have been analyzed in detail.Moreover,the performance of LIBs applied to grid-level energy storage systems is analyzed in terms of the following grid services:(1)frequency regulation;(2)peak shifting;(3)integration with renewable energy sources;and(4)power management.In addition,the challenges encountered in the application of LIBs are discussed and possible research directions aimed at overcoming these challenges are proposed to provide insight into the development of grid-level energy storage systems.
文摘Increasing railway traffic and energy utilization issues prompt electrified railway systems to be more economical,efficient and sustainable.As regenerative braking energy in railway systems has huge potential for optimized utilization,a lot of research has been focusing on how to use the energy efficiently and gain sustainable benefits.The energy storage system is an alternative because it not only deals with regenerative braking energy but also smooths drastic fluctuation of load power profile and optimizes energy management.In this work,we propose a co-phase traction power supply system with super capacitor(CSS_SC)for the purpose of realizing the function of energy management and power quality management in electrified railways.Besides,the coordinated control strategy is presented to match four working modes,including traction,regenerative braking,peak shaving and valley filling.A corresponding simulation model is built in MATLAB/Simulink to verify the feasibility of the proposed system under dynamic working conditions.The results demonstrate that CSS_SC is flexible to deal with four different working conditions and can realize energy saving within the allowable voltage unbalance of 0.008%in simulation in contrast to 1.3%of the standard limit.With such a control strategy,the performance of super capacitor is controlled to comply with efficiency and safety constraints.Finally,a case study demonstrates the improvement in power fluctuation with the valley-to-peak ratio reduced by 20.3%and the daily load factor increased by 17.9%.
基金Supported by Project of Science and Technology of PetroChina (2021DJ17,2021DJ21)。
文摘As a kind of clean energy which creates little carbon dioxide, natural gas will play a key role in the process of achieving “Peak Carbon Dioxide Emission” and “Carbon Neutrality”. The Long-range Energy Alternatives Planning System(LEAP) model was improved by using new parameters including comprehensive energy efficiency and terminal effective energy consumption. The Back Propagation(BP) Neural Network–LEAP model was proposed to predict key data such as total primary energy consumption, energy mix, carbon emissions from energy consumption, and natural gas consumption in China. Moreover, natural gas production in China was forecasted by the production composition method. Finally, based on the forecast results of natural gas supply and demand, suggestions were put forward on the development of China’s natural gas industry under the background of “Dual Carbon Targets”. The research results indicate that under the background of carbon peak and carbon neutrality, China’s primary energy consumption will peak(59.4×10^(8)tce) around 2035, carbon emissions from energy consumption will peak(103.4×10^(8)t) by 2025, and natural gas consumption will peak(6100×10^(8)m^(3)) around 2040, of which the largest increase will be contributed by the power sector and industrial sector. China’s peak natural gas production is about(2800–3400)×10^(8)m^(3), including(2100–2300)×10^(8)m^(3)conventional gas(including tight gas),(600–1050)×10^(8)m^(3)shale gas, and(150–220)×10^(8)m^(3)coalbed methane. Under the background of carbon peak and carbon neutrality, the natural gas consumption and production of China will further increase, showing a great potential of the natural gas industry.
文摘Grid-level large-scale electrical energy storage(GLEES) is an essential approach for balancing the supply–demand of electricity generation, distribution, and usage. Compared with conventional energy storage methods, battery technologies are desirable energy storage devices for GLEES due to their easy modularization, rapid response, flexible installation, and short construction cycles. In general, battery energy storage technologies are expected to meet the requirements of GLEES such as peak shaving and load leveling, voltage and frequency regulation, and emergency response, which are highlighted in this perspective. Furthermore, several types of battery technologies, including lead–acid, nickel–cadmium, nickel–metal hydride, sodium–sulfur, lithium-ion, and flow batteries, are discussed in detail for the application of GLEES. Moreover, some possible developing directions to facilitate efforts in this area are presented to establish a perspective on battery technology, provide a road map for guiding future studies, and promote the commercial application of batteries for GLEES.
基金supported by the National Key R&D Program of China(2018YFB0905000)Science and Technology Project of State Grid Corporation of China(SGTJDK00DWJS1800232).
文摘In order to alleviate the shortage of natural gas supply in winter,relevant policies have been issued to promote the construction of gas peak-shaving and storage facilities.Largescale gas storage can transfer the supply-demand relationship of natural gas in time sequence,which has great potential in improving the economy and reliabillity of urban multi-energy flow systems.Addressing this issue,this paper proposes a mid-and long-term energy optimization method for urban multi-energy flow system that considers seasonal peak shaving of natural gas.First,the energy supply and demand features of different energy subsystems are analyzed.Then,a network model of the electricity-gas-heat multi-energy flow system is established.Considering the time-of-use electricity price mechanism and the seasonal fluctuations of the natural gas price,a mid-and long-term energy optimization model maximizing the annual economic revenue is established.The alternative direction multiplier method with Gaussian back substitution(ADMM-GBS)algorithm is used to solve the optimal dispatch model.Finally,the proposed method is verified by employing the actual data of the demonstration zone in Yangzhong City,China.The simulation results show that the proposed method is effective.