An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage faciliti...An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage facilities are included in the model.These components are firstly modeled with respect to their properties and functions and,then,integrated at the system level by Graph Theory.The model can be used for simulating the system response in different scenarios of operation,and evaluate the consequences from the perspectives of supply security and resilience.A case study is considered to evaluate the accuracy of the model by benchmarking its results against those from literature and the software Pipeline Studio.Finally,the model is applied on a relatively complex natural gas pipeline network and the results are analyzed in detail from the supply security and resilience points of view.The main contributions of the paper are:firstly,a novel model of a complex gas pipeline network is proposed as a dynamic state-space model at system level;a method,based on the dynamic model,is proposed to analyze the security and resilience of supply from a system perspective.展开更多
A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the loa...A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the load-leveling function for a real pipeline system. A storage tank filled with activated carbon together with a filter constitutes the major part of the load-leveling facility. Pressure and temperature of the system, as well as the real gas output of the storage tank were recorded. It is proven that load-leveling by adsorption is technically feasible even for low pipeline pressure of natural gas supply system.展开更多
The personnel in refuge chamber absorb O_2 and exhale CO_2 all the time. Supplying O_2 and removing CO_2 are the basic function of refuge chamber. After disaster occurs, the supply of the compressed air or oxygen for ...The personnel in refuge chamber absorb O_2 and exhale CO_2 all the time. Supplying O_2 and removing CO_2 are the basic function of refuge chamber. After disaster occurs, the supply of the compressed air or oxygen for personnel in refuge chamber is limited. Thus, how to effectively use the compressed air and oxygen and try to improve the time of supply has a great significance. Supplying more oxygen will result in waste, while supplying less oxygen will cause its concentration to be lower, and harm life safety. This research uses the theoretical calculation and numerical simulation, finds critical gas supply for refuge chamber, and illuminates the change law of gas concentration with critical gas supply in refuge chamber,which provides theoretical guidance for effective use of compressed air and oxygen in refuge chamber.展开更多
Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from f...Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from factor-driven to innovation-driven pattern.In adapting展开更多
为了保障双燃料船燃料供给系统(Fuel Gas Supply System,FGSS)通风风机安全稳定运行,基于船舶FGSS内通风系统涉及的双璧管风机和燃气准备间风机,对其控制逻辑进行分析,并将控制方式、安全连锁及信号输出输入接口进行标准化配置。结果表...为了保障双燃料船燃料供给系统(Fuel Gas Supply System,FGSS)通风风机安全稳定运行,基于船舶FGSS内通风系统涉及的双璧管风机和燃气准备间风机,对其控制逻辑进行分析,并将控制方式、安全连锁及信号输出输入接口进行标准化配置。结果表明:智能化控制增加了船员操作的便利性,也增加了系统运行的智能化和安全可靠性。研究成果可为FGSS风机控制设计提供一定参考。展开更多
The welding arc,as a carrier for the conversion of electrical energy to thermal energy,has a direct impact on the quality of welding by its properties and states.In the tungsten inert gas(TIG)welding process under the...The welding arc,as a carrier for the conversion of electrical energy to thermal energy,has a direct impact on the quality of welding by its properties and states.In the tungsten inert gas(TIG)welding process under the condition of Ar-He alternating gas supply,the arc is alternately converted between Ar arc and He arc with an alternating gas supply cycle,which has obvious arc change characteristics.The FLUENT software was used to numerically simulate the characteristics of the TIG arc under the condition of alternating gas supply,and the arc temperature field,arc pressure,electric potential and current density distribution under the condition of alternating gas supply were obtained.Combined with the real-time data of arc pressure measured by the water-cooled copper plate with holes,it is proved that the TIG arc has obvious dynamic characteristics under the condition of Ar-He alternating gas supply.This unique dynamic TIG arc acts on the 5A06 aluminum alloy weld,causing the molten pool to stir,resulting in uniform microstructure and grain refinement at the weld,and thereby improving the mechanical properties of the welded joint.展开更多
The supply chain of many industries,including Oil and Gas,was significantly affected by the disruption caused by the Covid pandemic.This,in turn,had a knock-on effect on other industries around the globe.Sustaining th...The supply chain of many industries,including Oil and Gas,was significantly affected by the disruption caused by the Covid pandemic.This,in turn,had a knock-on effect on other industries around the globe.Sustaining the impact of the disruption posed a major challenge for the industry.This study contributes to the existing literature by identifying and analyzing the most significant drivers that affected the sustainability of the Oil and Gas supply chain during the Covid pandemic.Fifteen drivers were identified based on an extensive literature review and a survey conducted with experts working in the Oil and Gas industry.Multi-criteria decision-making methodologies were used to analyze these drivers.The analysis from the fuzzy analytical hierarchy process found that the most important drivers for the sustainability of the Oil and gas supply chain during the pandemic were"Risk management capacity","Government regulation"and"Health and safety of employees".On the other hand,the driver"Community Pressure"was found to be of the least importance.Furthermore,the study integrated the results of the fuzzy analytical hierarchy process with the fuzzy technique for order of preference by similarity to ideal solution to calculate the supply chain sustainability index.A case example was demonstrated to rank the industries based on such calculations.This study can support the governmental institutions in benchmarking the Oil and Gas industry based on its sustainability index.Additionally,the outcomes of the study will help industrial decision makers prioritize the drivers the company should focus and devise strategies based on the priority to improve the sustainability of their supply chain during severe disruption.This will be crucial as the World health organization has cautioned that the world may encounter another pandemic in the near future.展开更多
When saving energy in a pneumatic system,the problem of energy losses is usually solved by reducing the air supply pressure.The power-matching method is applied to optimize the air-supply pressure of the pneumatic sys...When saving energy in a pneumatic system,the problem of energy losses is usually solved by reducing the air supply pressure.The power-matching method is applied to optimize the air-supply pressure of the pneumatic system,and the energy-saving effect is verified by experiments.First,the experimental platform of a pneumatic rotary actuator servo-control system is built,and the mechanism of the valve-controlled cylinder system is analyzed.Then,the output power characteristics and load characteristics of the system are derived,and their characteristic curves are drawn.The employed air compressor is considered as a constant-pressure source of a quantitative pump,and the power characteristic of the system is matched.The power source characteristic curve should envelope the output characteristic curve and load characteristic curve.The minimum gas supply pressure obtained by power matching represents the optimal gas supply pressure.The comparative experiments under two different gas supply pressure conditions show that the system under the optimal gas supply pressure can greatly reduce energy losses.展开更多
By analyzing the distribution of global oil and gas fields and the reasons why some oil and gas fields are not in production, the distribution characteristics of oil and gas remaining recoverable reserves and their ye...By analyzing the distribution of global oil and gas fields and the reasons why some oil and gas fields are not in production, the distribution characteristics of oil and gas remaining recoverable reserves and their year-on-year changes, the distribution characteristics of oil and gas production and their year-on-year changes, and the development potential of oil and gas to be tapped in 2021, this paper sorts out systematically the current status and characteristics of global oil and gas development, summaries the major trends of global oil and gas development, puts forward enlightenment for international oil and gas cooperation. In 2021, oil and gas fields were widely distributed, the number of non-producing oil and gas fields was large;the whole oil and gas remaining recoverable reserves declined slightly, unconventional oil and gas remaining recoverable reserves dropped significantly;the overall oil and gas production continuously increased, the outputs of key resource-host countries kept year-on-year growth;undeveloped oilfields had abundant reserves and great development potential. Combined with global oil and gas geopolitics, oil and gas industry development trends, oil and gas investment intensity, and the tracking and judgment of hotspot fields, the major trends of global oil and gas development in 2021 are summarized. On this basis, the four aspects of enlightenment and suggestions for international oil and gas cooperation and development strategies are put forward: attach great importance to the obligation of marine abandonment to ensure high-quality and long-term benefit development of offshore oil and gas;adhere to the principle of not going to dangerous and chaotic places, strengthen the concentration of oil and gas assets, and establish multi stable supply bases;based on the multi-scenario demand of natural gas, realize the transformation from integrated collaboration to full oil and gas industry chain development;increase the acquisition of high-quality large-scale assets, and pay attention to the continuous optimization of the shareholding ratio of projects at different stages.展开更多
Natural gas consumption forecasting is crucial for transmission system operators,distribution system operators,traders,and other players in the market.This work collects natural gas forecasting scientific works in acc...Natural gas consumption forecasting is crucial for transmission system operators,distribution system operators,traders,and other players in the market.This work collects natural gas forecasting scientific works in accordance with the forecasting tool used by Energinet,the Danish transmission system operator.The work provides an analytical description on the long-term stability and security of the natural gas transmission system in Denmark.This work offers a detailed scientific directory on natural gas forecasting,presenting the so far vaguely described market in a more structured manner.The paper was focused on presenting the latest findings on identifying the selection each time of the appropriate prognostic model for each application based on:①the option for supporting double seasonality,②various exogenous variables,③suitability for day-ahead forecasting,and④ease of use and all these versus Energinet’s current model.展开更多
<span style="font-family:Verdana;">Technologies for gas conversion have attracted more serious attention, but energy efficiency, supply deficiencies, as well as other risks undermining the gas supply i...<span style="font-family:Verdana;">Technologies for gas conversion have attracted more serious attention, but energy efficiency, supply deficiencies, as well as other risks undermining the gas supply industry</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> make it difficult to achieve sustainability in gas supply in Ghana. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This study </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">explored strategies for improving supplies for sustainable power generation in Ghana. Specifically, the study investigates the risks associated with the gas supply industry and also investigates strategies for improving gas supplies in Ghana. A descriptive study that applied both qualitative and quantitative tools was applied to data collection and analysis to allow for an in-depth analysis of the findings of the research. The population was concentrated on the regulators (Energy Commission) and consumers (VRA and Sunon Asogli, and GNGC/Eni in the supply domains. In all, 357 population w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> targeted with a sample of 151. Probability (simple random sampling) and non-probability (purposive) sampling approaches were applied to source participants for the study. Statistical inferential tools that guided the analysis included means, standard deviation, Relative Importance Index (RII). The study identified issues of power sector debt due to the weak financial background of the gas supply sector, poor infrastructure, issues of corruption created by delays, poor transparency and weak regulatory framework as key risk factors in the gas supply industry in Ghana. The study also concluded that strategies to support the drive to achieve sustainability in the gas supply industry should involve a planned action towards providing regular and improved infrastructure in transportation and gas supply pipelines to enhance the visibility of the local gas industry and to also meet both domestic and industrial demand for gas products. Again, there should be the establishment and maintenance of functional gas-related policies and regulators, as well as an emergency supply plan to address any shocks that may tend to impact the gas supply industry in Ghana.</span></span></span>展开更多
China natural gas industry is at a turning point. Growth of mid-long term natural gas consumption may maintain at about 10%, supply is sufficient or even "over-sufficient", natural gas price will be determin...China natural gas industry is at a turning point. Growth of mid-long term natural gas consumption may maintain at about 10%, supply is sufficient or even "over-sufficient", natural gas price will be determined by competition, oil and gas pipeline facilities will be opened fairly, and private enterprises will play important roles in natural gas exploration, development, storage, transportation, and trade. It can been foreseen that China natural gas industry is very likely to take a turn in next 10 years, and a modern natural gas market with consumption about 500 billion cubic meters will come into being characterized by complete supervision system, diversified market, steady supply, fairly opened pipelines, transparent trading mechanism, and competitive prices.展开更多
In this paper,a novel systematic and integrated methodology to assess gas supply reliability is proposed based on the Monte Carlo method,statistical analysis,mathematical-probabilistic analysis,and hydraulic simulatio...In this paper,a novel systematic and integrated methodology to assess gas supply reliability is proposed based on the Monte Carlo method,statistical analysis,mathematical-probabilistic analysis,and hydraulic simulation.The method proposed has two stages.In the first stage,typical scenarios are determined.In the second stage,hydraulic simulation is conducted to calculate the flow rate in each typical scenario.The result of the gas pipeline system calculated is the average gas supply reliability in each typical scenario.To verify the feasibility,the method proposed is applied for a real natural gas pipelines network system.The comparison of the results calculated and the actual gas supply reliability based on the filed data in the evaluation period suggests the assessment results of the method proposed agree well with the filed data.Besides,the effect of different components on gas supply reliability is investigated,and the most critical component is identified.For example,the 48th unit is the most critical component for the SH terminal station,while the 119th typical scenario results in the most severe consequence which causes the loss of 175.61×10^4 m^3 gas when the 119th scenario happens.This paper provides a set of scientific and reasonable gas supply reliability indexes which can evaluate the gas supply reliability from two dimensions of quantity and time.展开更多
The world's present demand for oil and gas is still in a rapid growth period, and traditional oil and gas resources account for more than 60% of the global oil and gas supply. The Americas is the world's second larg...The world's present demand for oil and gas is still in a rapid growth period, and traditional oil and gas resources account for more than 60% of the global oil and gas supply. The Americas is the world's second largest production and consumption center of liquid fuel, and is also the world's largest natural gas producer. In 2016, the Americas had 85.3 billion tons of proven oil reserves and 18.7 trillion m3 of proven natural gas reserves, which account for 35.4% and 10.0% of world's total reserves, respectively. It produced 1267.1 Mt of oil and 1125.4 billion m3 of natural gas, which account for 28.9% and 31.7% of the world's total production, respectively. The crude oil and natural gas reserves are mainly distributed in the U.S., Canada and Venezuela. The U.S. is the earliest and most successful country in shale gas exploration and development, and its shale gas is concentrated in the southern, central and eastern U.S., including the Marcellcus shale, Barnett shale, EagleFord shale, Bakken shale, Fayettevis shale, Haynsvill shale, Woodford shale and Monterey/Santos shale. The potential oil and gas resources in the Americas are mainly concentrated in the anticline and stratigraphic traps in the Middle- Upper Jurassic slope deposition of the North Slope Basin, the Paleozoic Madsion group dolomite and limestone in the Williston Basin, dominant stratigraphic traps and few structural traps in the Western Canada Sedimentary Basin, the Eocene structural-stratigraphic hydrocarbon combination, structural- unconformity traps and structural hydrocarbon combination, and the Upper Miocene stratigraphic- structural hydrocarbon combination in the Maracaibo Basin of Venezuela, the stratigraphic-structural traps and fault horst, tilting faulted blocks and anticlines related to subsalt structure and basement activity in the Campos Basin, the subsalt central low-uplift belt and supra-salt central low-uplift belt in the Santos Basin of Brazil, and the structural-stratigraphic traps in the Neuquen Basin of Argentina. In addition, the breakthrough of seismic subsalt imaging technology makes the subsalt deepwater sea area of eastern Barzil an important oil and gas potential area.展开更多
The bi-directional energy conversion components such as gas-fired generators(GfG)and power-to-gas(P2G)have enhanced the interactions between power and gas systems.This paper focuses on the steady-state energy flow ana...The bi-directional energy conversion components such as gas-fired generators(GfG)and power-to-gas(P2G)have enhanced the interactions between power and gas systems.This paper focuses on the steady-state energy flow analysis of an integrated power-gas system(IPGS)with bi-directional energy conversion components.Considering the shortcomings of adjusting active power balance only by single GfG unit and the capacity limitation of slack bus,a multi-slack bus(MSB)model is proposed for integrated power-gas systems,by combining the advantages of bi-directional energy conversion components in adjusting active power.The components are modeled as participating units through iterative participation factors solved by the power sensitivity method,which embeds the effect of system conditions.On this basis,the impact of the mixed problem of multi-type gas supply sources(such as hydrogen and methane generated by P2G)on integrated system is considered,and the gas characteristics-specific gravity(SG)and gross calorific value(GCV)are modeled as state variables to obtain a more accurate operational results.Finally,a bi-directional energy flow solver with iterative SG,GCV and participation factors is developed to assess the steady-state equilibrium point of IPGS based on Newton-Raphson method.The applicability of proposed methodology is demonstrated by analyzing an integrated IEEE 14-bus power system and a Belgian 20-node gas system.展开更多
基金supported by National Natural Science Foundation of China[grant number 51904316]provided by China University of Petroleum,Beijing[grant number2462021YJRC013,2462020YXZZ045]
文摘An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage facilities are included in the model.These components are firstly modeled with respect to their properties and functions and,then,integrated at the system level by Graph Theory.The model can be used for simulating the system response in different scenarios of operation,and evaluate the consequences from the perspectives of supply security and resilience.A case study is considered to evaluate the accuracy of the model by benchmarking its results against those from literature and the software Pipeline Studio.Finally,the model is applied on a relatively complex natural gas pipeline network and the results are analyzed in detail from the supply security and resilience points of view.The main contributions of the paper are:firstly,a novel model of a complex gas pipeline network is proposed as a dynamic state-space model at system level;a method,based on the dynamic model,is proposed to analyze the security and resilience of supply from a system perspective.
基金Supported by the Science and Technology Commission of Tianjin and partly supported by the National Natural Science Foundation of China (No. 29936100).
文摘A load-leveling method through adsorption was presented to adjust the supply quantity according to the consumption rate of natural gas with time. An experimental simulation set up was designed and used to test the load-leveling function for a real pipeline system. A storage tank filled with activated carbon together with a filter constitutes the major part of the load-leveling facility. Pressure and temperature of the system, as well as the real gas output of the storage tank were recorded. It is proven that load-leveling by adsorption is technically feasible even for low pipeline pressure of natural gas supply system.
基金supported by the National Natural Science Foundation of China(Grant Nos.51504251,51404263)the National Natural Science Foundation of Jiangsu of China(Nos.BK20140187,BK20130203)+4 种基金the Fundamental Research Funds for the Central Universities(2015QNB01)the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Central Universities Special Funds for Fundamental Research Funds of the China University of Mining and Technology(No.2014ZDPY04)the Innovation Team of CUMT(2014QN001)the Natural Science Foundation of Jiangsu Province(No.BK2012571)
文摘The personnel in refuge chamber absorb O_2 and exhale CO_2 all the time. Supplying O_2 and removing CO_2 are the basic function of refuge chamber. After disaster occurs, the supply of the compressed air or oxygen for personnel in refuge chamber is limited. Thus, how to effectively use the compressed air and oxygen and try to improve the time of supply has a great significance. Supplying more oxygen will result in waste, while supplying less oxygen will cause its concentration to be lower, and harm life safety. This research uses the theoretical calculation and numerical simulation, finds critical gas supply for refuge chamber, and illuminates the change law of gas concentration with critical gas supply in refuge chamber,which provides theoretical guidance for effective use of compressed air and oxygen in refuge chamber.
文摘Having experienced over 30 years of rapid growth,China’s economic development is entering a new normal featured by an ever optimizing economic structure shifting from high-speed to medium-high speed growth,and from factor-driven to innovation-driven pattern.In adapting
文摘为了保障双燃料船燃料供给系统(Fuel Gas Supply System,FGSS)通风风机安全稳定运行,基于船舶FGSS内通风系统涉及的双璧管风机和燃气准备间风机,对其控制逻辑进行分析,并将控制方式、安全连锁及信号输出输入接口进行标准化配置。结果表明:智能化控制增加了船员操作的便利性,也增加了系统运行的智能化和安全可靠性。研究成果可为FGSS风机控制设计提供一定参考。
基金supported by Natural Science Foundation of Heilongjiang Province,China(Grant No.LH2019E057).
文摘The welding arc,as a carrier for the conversion of electrical energy to thermal energy,has a direct impact on the quality of welding by its properties and states.In the tungsten inert gas(TIG)welding process under the condition of Ar-He alternating gas supply,the arc is alternately converted between Ar arc and He arc with an alternating gas supply cycle,which has obvious arc change characteristics.The FLUENT software was used to numerically simulate the characteristics of the TIG arc under the condition of alternating gas supply,and the arc temperature field,arc pressure,electric potential and current density distribution under the condition of alternating gas supply were obtained.Combined with the real-time data of arc pressure measured by the water-cooled copper plate with holes,it is proved that the TIG arc has obvious dynamic characteristics under the condition of Ar-He alternating gas supply.This unique dynamic TIG arc acts on the 5A06 aluminum alloy weld,causing the molten pool to stir,resulting in uniform microstructure and grain refinement at the weld,and thereby improving the mechanical properties of the welded joint.
文摘The supply chain of many industries,including Oil and Gas,was significantly affected by the disruption caused by the Covid pandemic.This,in turn,had a knock-on effect on other industries around the globe.Sustaining the impact of the disruption posed a major challenge for the industry.This study contributes to the existing literature by identifying and analyzing the most significant drivers that affected the sustainability of the Oil and Gas supply chain during the Covid pandemic.Fifteen drivers were identified based on an extensive literature review and a survey conducted with experts working in the Oil and Gas industry.Multi-criteria decision-making methodologies were used to analyze these drivers.The analysis from the fuzzy analytical hierarchy process found that the most important drivers for the sustainability of the Oil and gas supply chain during the pandemic were"Risk management capacity","Government regulation"and"Health and safety of employees".On the other hand,the driver"Community Pressure"was found to be of the least importance.Furthermore,the study integrated the results of the fuzzy analytical hierarchy process with the fuzzy technique for order of preference by similarity to ideal solution to calculate the supply chain sustainability index.A case example was demonstrated to rank the industries based on such calculations.This study can support the governmental institutions in benchmarking the Oil and Gas industry based on its sustainability index.Additionally,the outcomes of the study will help industrial decision makers prioritize the drivers the company should focus and devise strategies based on the priority to improve the sustainability of their supply chain during severe disruption.This will be crucial as the World health organization has cautioned that the world may encounter another pandemic in the near future.
基金Supported by Henan Province Science and Technology Key Project of China(Grant Nos.202102210081,202102210082)Fundamental Research Funds for Henan Province Colleges and Universities of China(Grant No.NSFRF140120)Doctor Foundation of Henan Polytechnic University(Grant No.B2012-101).
文摘When saving energy in a pneumatic system,the problem of energy losses is usually solved by reducing the air supply pressure.The power-matching method is applied to optimize the air-supply pressure of the pneumatic system,and the energy-saving effect is verified by experiments.First,the experimental platform of a pneumatic rotary actuator servo-control system is built,and the mechanism of the valve-controlled cylinder system is analyzed.Then,the output power characteristics and load characteristics of the system are derived,and their characteristic curves are drawn.The employed air compressor is considered as a constant-pressure source of a quantitative pump,and the power characteristic of the system is matched.The power source characteristic curve should envelope the output characteristic curve and load characteristic curve.The minimum gas supply pressure obtained by power matching represents the optimal gas supply pressure.The comparative experiments under two different gas supply pressure conditions show that the system under the optimal gas supply pressure can greatly reduce energy losses.
基金Scientific Research and Technology Development Project(2021DJ3205)。
文摘By analyzing the distribution of global oil and gas fields and the reasons why some oil and gas fields are not in production, the distribution characteristics of oil and gas remaining recoverable reserves and their year-on-year changes, the distribution characteristics of oil and gas production and their year-on-year changes, and the development potential of oil and gas to be tapped in 2021, this paper sorts out systematically the current status and characteristics of global oil and gas development, summaries the major trends of global oil and gas development, puts forward enlightenment for international oil and gas cooperation. In 2021, oil and gas fields were widely distributed, the number of non-producing oil and gas fields was large;the whole oil and gas remaining recoverable reserves declined slightly, unconventional oil and gas remaining recoverable reserves dropped significantly;the overall oil and gas production continuously increased, the outputs of key resource-host countries kept year-on-year growth;undeveloped oilfields had abundant reserves and great development potential. Combined with global oil and gas geopolitics, oil and gas industry development trends, oil and gas investment intensity, and the tracking and judgment of hotspot fields, the major trends of global oil and gas development in 2021 are summarized. On this basis, the four aspects of enlightenment and suggestions for international oil and gas cooperation and development strategies are put forward: attach great importance to the obligation of marine abandonment to ensure high-quality and long-term benefit development of offshore oil and gas;adhere to the principle of not going to dangerous and chaotic places, strengthen the concentration of oil and gas assets, and establish multi stable supply bases;based on the multi-scenario demand of natural gas, realize the transformation from integrated collaboration to full oil and gas industry chain development;increase the acquisition of high-quality large-scale assets, and pay attention to the continuous optimization of the shareholding ratio of projects at different stages.
文摘Natural gas consumption forecasting is crucial for transmission system operators,distribution system operators,traders,and other players in the market.This work collects natural gas forecasting scientific works in accordance with the forecasting tool used by Energinet,the Danish transmission system operator.The work provides an analytical description on the long-term stability and security of the natural gas transmission system in Denmark.This work offers a detailed scientific directory on natural gas forecasting,presenting the so far vaguely described market in a more structured manner.The paper was focused on presenting the latest findings on identifying the selection each time of the appropriate prognostic model for each application based on:①the option for supporting double seasonality,②various exogenous variables,③suitability for day-ahead forecasting,and④ease of use and all these versus Energinet’s current model.
文摘<span style="font-family:Verdana;">Technologies for gas conversion have attracted more serious attention, but energy efficiency, supply deficiencies, as well as other risks undermining the gas supply industry</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">,</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> make it difficult to achieve sustainability in gas supply in Ghana. </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">This study </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">explored strategies for improving supplies for sustainable power generation in Ghana. Specifically, the study investigates the risks associated with the gas supply industry and also investigates strategies for improving gas supplies in Ghana. A descriptive study that applied both qualitative and quantitative tools was applied to data collection and analysis to allow for an in-depth analysis of the findings of the research. The population was concentrated on the regulators (Energy Commission) and consumers (VRA and Sunon Asogli, and GNGC/Eni in the supply domains. In all, 357 population w</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">as</span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;"> targeted with a sample of 151. Probability (simple random sampling) and non-probability (purposive) sampling approaches were applied to source participants for the study. Statistical inferential tools that guided the analysis included means, standard deviation, Relative Importance Index (RII). The study identified issues of power sector debt due to the weak financial background of the gas supply sector, poor infrastructure, issues of corruption created by delays, poor transparency and weak regulatory framework as key risk factors in the gas supply industry in Ghana. The study also concluded that strategies to support the drive to achieve sustainability in the gas supply industry should involve a planned action towards providing regular and improved infrastructure in transportation and gas supply pipelines to enhance the visibility of the local gas industry and to also meet both domestic and industrial demand for gas products. Again, there should be the establishment and maintenance of functional gas-related policies and regulators, as well as an emergency supply plan to address any shocks that may tend to impact the gas supply industry in Ghana.</span></span></span>
文摘China natural gas industry is at a turning point. Growth of mid-long term natural gas consumption may maintain at about 10%, supply is sufficient or even "over-sufficient", natural gas price will be determined by competition, oil and gas pipeline facilities will be opened fairly, and private enterprises will play important roles in natural gas exploration, development, storage, transportation, and trade. It can been foreseen that China natural gas industry is very likely to take a turn in next 10 years, and a modern natural gas market with consumption about 500 billion cubic meters will come into being characterized by complete supervision system, diversified market, steady supply, fairly opened pipelines, transparent trading mechanism, and competitive prices.
文摘In this paper,a novel systematic and integrated methodology to assess gas supply reliability is proposed based on the Monte Carlo method,statistical analysis,mathematical-probabilistic analysis,and hydraulic simulation.The method proposed has two stages.In the first stage,typical scenarios are determined.In the second stage,hydraulic simulation is conducted to calculate the flow rate in each typical scenario.The result of the gas pipeline system calculated is the average gas supply reliability in each typical scenario.To verify the feasibility,the method proposed is applied for a real natural gas pipelines network system.The comparison of the results calculated and the actual gas supply reliability based on the filed data in the evaluation period suggests the assessment results of the method proposed agree well with the filed data.Besides,the effect of different components on gas supply reliability is investigated,and the most critical component is identified.For example,the 48th unit is the most critical component for the SH terminal station,while the 119th typical scenario results in the most severe consequence which causes the loss of 175.61×10^4 m^3 gas when the 119th scenario happens.This paper provides a set of scientific and reasonable gas supply reliability indexes which can evaluate the gas supply reliability from two dimensions of quantity and time.
基金financially supported by the National Natural Science Foundation of China(grant No.41402219)
文摘The world's present demand for oil and gas is still in a rapid growth period, and traditional oil and gas resources account for more than 60% of the global oil and gas supply. The Americas is the world's second largest production and consumption center of liquid fuel, and is also the world's largest natural gas producer. In 2016, the Americas had 85.3 billion tons of proven oil reserves and 18.7 trillion m3 of proven natural gas reserves, which account for 35.4% and 10.0% of world's total reserves, respectively. It produced 1267.1 Mt of oil and 1125.4 billion m3 of natural gas, which account for 28.9% and 31.7% of the world's total production, respectively. The crude oil and natural gas reserves are mainly distributed in the U.S., Canada and Venezuela. The U.S. is the earliest and most successful country in shale gas exploration and development, and its shale gas is concentrated in the southern, central and eastern U.S., including the Marcellcus shale, Barnett shale, EagleFord shale, Bakken shale, Fayettevis shale, Haynsvill shale, Woodford shale and Monterey/Santos shale. The potential oil and gas resources in the Americas are mainly concentrated in the anticline and stratigraphic traps in the Middle- Upper Jurassic slope deposition of the North Slope Basin, the Paleozoic Madsion group dolomite and limestone in the Williston Basin, dominant stratigraphic traps and few structural traps in the Western Canada Sedimentary Basin, the Eocene structural-stratigraphic hydrocarbon combination, structural- unconformity traps and structural hydrocarbon combination, and the Upper Miocene stratigraphic- structural hydrocarbon combination in the Maracaibo Basin of Venezuela, the stratigraphic-structural traps and fault horst, tilting faulted blocks and anticlines related to subsalt structure and basement activity in the Campos Basin, the subsalt central low-uplift belt and supra-salt central low-uplift belt in the Santos Basin of Brazil, and the structural-stratigraphic traps in the Neuquen Basin of Argentina. In addition, the breakthrough of seismic subsalt imaging technology makes the subsalt deepwater sea area of eastern Barzil an important oil and gas potential area.
文摘The bi-directional energy conversion components such as gas-fired generators(GfG)and power-to-gas(P2G)have enhanced the interactions between power and gas systems.This paper focuses on the steady-state energy flow analysis of an integrated power-gas system(IPGS)with bi-directional energy conversion components.Considering the shortcomings of adjusting active power balance only by single GfG unit and the capacity limitation of slack bus,a multi-slack bus(MSB)model is proposed for integrated power-gas systems,by combining the advantages of bi-directional energy conversion components in adjusting active power.The components are modeled as participating units through iterative participation factors solved by the power sensitivity method,which embeds the effect of system conditions.On this basis,the impact of the mixed problem of multi-type gas supply sources(such as hydrogen and methane generated by P2G)on integrated system is considered,and the gas characteristics-specific gravity(SG)and gross calorific value(GCV)are modeled as state variables to obtain a more accurate operational results.Finally,a bi-directional energy flow solver with iterative SG,GCV and participation factors is developed to assess the steady-state equilibrium point of IPGS based on Newton-Raphson method.The applicability of proposed methodology is demonstrated by analyzing an integrated IEEE 14-bus power system and a Belgian 20-node gas system.