Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified...Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter.展开更多
The effects of impeller type, stirring power, gas flow rate, and liquid concentration on the gas–liquid mixing in a shear-thinning system with a coaxial mixer were investigated by experiment, and the overall gas hold...The effects of impeller type, stirring power, gas flow rate, and liquid concentration on the gas–liquid mixing in a shear-thinning system with a coaxial mixer were investigated by experiment, and the overall gas holdup, relative power demand, and volumetric mass transfer coefficient under different conditions were compared. The results show that, the increasing stirring power or gas flow rate is beneficial in promoting the overall gas holdup and volumetric mass transfer coefficient, while the increasing system viscosity weakens the mass transfer in a shearing–thinning system. Among the three turbines, the six curved-blade disc turbine(BDT-6) exhibits the best gas pumping capacity; the six 45° pitched-blade disc turbine(PBDT-6) has the highest volumetric mass transfer coefficient at the same unit volume power.展开更多
This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transdu...This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transducer(PZT) was employed to induce the vibration in this microreactor. Liquid side volumetric mass transfer coefficients were measured by physical and chemical methods of CO_2 absorption into water and Na OH solution. The approach of absorption of CO_2 into a 1 mol·L^(-1) Na OH solution was used for analysis of interfacial areas. With the help of a photography system, the fluid flow patterns inside the microreactor were analyzed. The effects of superficial liquid velocity, initial concentration of Na OH, superficial CO_2 gas velocity and length of microreactor on the mass transfer rate were investigated. The comparison between sonicated and plain microreactors(microreactor with and without ultrasound) shows that the ultrasound wave irradiation has a significant effect on kLa and interfacial area at various operational conditions. For the microreactor length of 12 cm, ultrasound waves improved kLa and interfacial area about 21% and 22%, respectively. From this study, it can be concluded that ultrasound wave irradiation in microreactor has a great effect on the mass transfer rate. This study suggests a new enhancement technique to establish high interfacial area and kLa in microreactors.展开更多
In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model...In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model of heat and mass transfer with phase change is established. The gas flow and liquid droplets are treated as a continuous phase with a Eulerian approach and as a discrete phase with a Lagrangian approach, respectively. The coupled problem of heat, force, and mass transfers between gas flow and liquid droplets is solved by a commercial computational fluid dynamics(CFD) package, FLUENT. The numerical results show that the water injections have an important influence on the distributions of pressure, velocity, temperature, and mole fraction of vapor, especially for the spraying region in the throat. In the spraying region, the pressure drop is higher and the velocity is lower than in other regions due to the gas-droplet drag, while the temperature is lower because the droplet absorbs large amounts of heat from the high temperature gas and the mole fraction of vapor is higher due to the phase change of the liquid droplet. A number of cases with different Water-to-gas volume flow ratios and baffle openings were simulated. The dependence of pressure drop, velocity, temperature, mole fraction of vapor, and collection efficiency on both the water-to-gas volume flow ratio and baffle opening are analyzed. The good agreements between simulation results and experiment data of pressure drop, temperature, and collection efficiency validate the model. The model should facilitate optimization of the venturi scrubber design in order to give better performance with lower pressure drops and higher collection efficiency.展开更多
The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally inve...The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.展开更多
Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders...Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).展开更多
In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through poro...In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode,surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally,a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.展开更多
Using Xenon lamp lights to overcome the strong interference from the welding arc, a computer-based system is developed to sense and visualize the metal transfer in GMAW. This system combines through-the-arc sensing of...Using Xenon lamp lights to overcome the strong interference from the welding arc, a computer-based system is developed to sense and visualize the metal transfer in GMAW. This system combines through-the-arc sensing of the welding current and arc voltage with high speed imaging of the metal transfer. It can simultaneously display the metal transfer processes and waveforms of electrical welding parameters in real-time The metal transfer videos and waveforms of electrical welding parameters can be recorded. Metal transfers under various welding conditions have been investigated with the system developed.展开更多
The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas vo...The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas volumes and the procedure for calculating heat transfer in torch furnaces, fire boxes, and combustion chambers, elaborated on their basis. The example of heat transfer calculation in a torch furnace is given, and it is significantly non-uniform in nature. Non-uniformity of heat flux distribution on heating surfaces is given. According to the results of calculations, a new furnace is designed to decrease the non-uniformity of ingot heating, fuel rate, and increase the furnace capacity. The calculation results of the distribution of heat fluxes on the heating surfaces are given in changing torch geometric dimensions. These results are confirmed by experimental studies.展开更多
1 INTRODUCTIONIt is well known that the throughput of many gas-liquid reactors is limited by the rate atwhich a gaseous component can be transferred from the gas to the liquid.For example,it isthe oxygen transfer capa...1 INTRODUCTIONIt is well known that the throughput of many gas-liquid reactors is limited by the rate atwhich a gaseous component can be transferred from the gas to the liquid.For example,it isthe oxygen transfer capacity of a fermentor that set the upper limit to the productivity ofmost aerobic fermentation.Therefore,studies have been in progress to increase the masstransfer rate between the gas bubble and the broth by acting on classical parameters of bubblesize and the turbulence of flow.However,the intensive turbulence of flow usually展开更多
A new method for measuring the solid flow rate in gas solid two phase flow is introduced in this paper. An electrically heated probe was put in a gas solid two phase flow. For certain solid particles, the flow medi...A new method for measuring the solid flow rate in gas solid two phase flow is introduced in this paper. An electrically heated probe was put in a gas solid two phase flow. For certain solid particles, the flow media with different velocities and concentrations of particles produced different effects on heat transfer with the probe. The solid flow rate can be measured according to the intensity of heat transfer. Experiments were made on a pilot pneumatic conveying device. Research results prove that the method works effectively and reliably.展开更多
In this work,the solubility data and liquid-phase mass transfer coefficients of hydrogen(H2),methane(CH4)and their mixtures in vacuum gas oil(VGO)at temperatures(353.15-453.15 K)and pressures(1-7 MPa)were measured,whi...In this work,the solubility data and liquid-phase mass transfer coefficients of hydrogen(H2),methane(CH4)and their mixtures in vacuum gas oil(VGO)at temperatures(353.15-453.15 K)and pressures(1-7 MPa)were measured,which are necessary for catalytic cracking process simulation and design.The solubility of H2 and CH4 in VGO increases with the increase of pressure,but decreases with the increase of temperature.Henry’s constants of H2 and CH4 follow the relation of In H=-413.05/T+5.27 and In H=-990.67/T+5.87,respectively.The molar fractions of H2 and system pressures at different equilibrium time were measured to estimate the liquid-phase mass transfer coefficients.The results showed that with the increase of pressure,the liquid-phase mass transfer coefficients increase.Furthermore,the solubility of H2 and CH4 in VGO was predicted by the predictive COSMO-RS model,and the predicted values agree well with experimental data.In addition,the gas-liquid equilibrium(GLE)for H2+CH4+VGO system at different feeding gas ratios in volume fraction(i.e.,H285%+CH415%and H290%+CH410%)was measured.The selectivity of H2 to CH4 predicted by the COSMO-RS model agrees well with experimental data.This work provides the basic thermodynamic and dynamic data for fuel oil catalytic cracking processes.展开更多
Mass transfer at hydrogen evolving mercury electrode has been studied by determining mass transfer coefficients of indicator ions as the function of current density of hydrogen evolution for various kinds of indica to...Mass transfer at hydrogen evolving mercury electrode has been studied by determining mass transfer coefficients of indicator ions as the function of current density of hydrogen evolution for various kinds of indica tor ions in sulphuric acid solution.Mercury adhering to metal substrates of Ni,Cu or Ag is used as mercury electrode to overcome its trembling during the electrolysis.The effect of difTerent indicator ions,electrode character istic,substrate material,diameter of electrode and temperature is examined.It is found that the transfer coefficient is proportional to the mass square root of current density of hydrogen evolution.展开更多
Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration a...Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.展开更多
High-speed photography is utilized to capture an image of the arc area during the welding process.The variation in arc shape and droplet transfer behavior is compared when employing shielding gases of different compon...High-speed photography is utilized to capture an image of the arc area during the welding process.The variation in arc shape and droplet transfer behavior is compared when employing shielding gases of different components and proportions(e.g.,80%Ar+20%CO_(2),85%Ar+10%CO_(2)+5%O2,65%Ar+26.5%He+8%CO_(2)+0.5%O2)using a Ф1.2 mm welding wire under 360 A current.Furthermore,the effects of various shielding gas components on the stability of the welding process are discussed.It was determined that the addition of oxygen and helium changed the arc’s shape and the behavior of the droplet transfer,and the welding process stability increased.展开更多
A cold Rydberg gas, with its atoms prepared initially all in the excited state <span style="white-space:nowrap;">|<em>n</em><sub>0</sub>></span> , with <em>n</...A cold Rydberg gas, with its atoms prepared initially all in the excited state <span style="white-space:nowrap;">|<em>n</em><sub>0</sub>></span> , with <em>n</em><sub>0 </sub><span style="white-space:nowrap;">»</span>1, contains an excessive amount of energy, and presumably is to relax by the Penning-type <em>molecular auto-ionization</em> (<em>MAI</em>), in which a portion of excess energy of one atom is given to another near-by atom and ionizing it. Its complementary process, the <em>resonant energy transfer</em> (<em>RET</em>), is discussed, in which the excess energy of one atom is used on another to form a hyper-excited atomic state <span style="white-space:normal;">|</span><em style="white-space:normal;">n</em><sub style="white-space:normal;"><em>a</em></sub><span style="white-space:normal;">></span> with <em>n</em><sub><em>a</em></sub><span style="white-space:nowrap;">»</span><em style="white-space:normal;">n</em><sub style="white-space:normal;">0</sub>. This process is always present, provided certain resonance energy conditions are satisfied. In this report, the <em>n</em><sub>0</sub> and density dependences of the RET rates are studied in detail, employing a simple model: 1) at low densities, the RET is mediated by the dipole-dipole coupling <em>V</em><sub><em>dd</em></sub> and its rates are generally much smaller than that of MAI, especially for small <em>n</em><sub>0</sub>. But 2) as the density increases, our model shows that the rates become of comparable magnitude or even larger than the MAI rates. The<em> V</em><sub><em>dd</em></sub> is no longer adequate. We, then construct a semi-empirical potential to describe the RET process. 3) At high densities, we show that the atomic orbital of <span style="white-space:normal;">|</span><em style="white-space:normal;">n</em><sub style="white-space:normal;"><em>a</em></sub><span style="white-space:normal;">></span> overlaps with that of neighboring atoms, and the electron-electron potential becomes prominent, resulting in much higher rates.展开更多
A pore-array intensified tube-in-tube microchannel(PA-TMC),which is characterized by high throughput and low pressure drop,was developed as a gas–liquid contactor.The sulfite oxidation method was used to determine th...A pore-array intensified tube-in-tube microchannel(PA-TMC),which is characterized by high throughput and low pressure drop,was developed as a gas–liquid contactor.The sulfite oxidation method was used to determine the oxygen efficiency(φ)and volumetric mass transfer coefficient(k_(L)a)of PA-TMC,and the mass transfer amount per unit energy(ε)was calculated by using the pressure drop.The effects of structural and operating parameters were investigated systematically,and the twophase flow behavior was monitored by using a charge-coupled device imaging system.The results indicated that the gas absorption efficiency and mass transfer performance of the PA-TMC were improved with increasing pore number,flow rate,and number of helical coil turns and decreasing pore size,row number,annular size,annular length,and surface tension.Theφ,εand k La of PA-TMC could reach 31.3%,1.73×10^(-4) mol/J,and 7.0 s-1,respectively.The Sherwood number was correlated with the investigated parameters to guide the design of PA-TMC in gas absorption and mass transfer processes.展开更多
The morphology characteristics of CH_(4),CO_(2),and CO_(2)+N_(2)hydrate film forming on the suspending gas bubbles are studied using microscopic visual method at supercooling conditions from 1.0 to 3.0 K.The hydrate f...The morphology characteristics of CH_(4),CO_(2),and CO_(2)+N_(2)hydrate film forming on the suspending gas bubbles are studied using microscopic visual method at supercooling conditions from 1.0 to 3.0 K.The hydrate film vertical growth rate and thickness along the planar gas-water interface are measured to study the hydrate formation kinetics and mass transfer process.Adding N_(2)in the gas mixture plays the same role as lowering the supercooling conditions,both retarding the crystal nucleation and growth rates,which results in larger single crystal size and rough hydrate morphology.N_(2)in the gas mixture helps to delay the secondary nucleation on the hydrate film,which is beneficial to maintain the porethroat structure and enhance the mass transfer.The vertical growth rate of hydrate film mainly depends on the supercooling conditions and gas compositions but has weak dependence on the experimental temperature and pressure.Under the same gas composition condition,the final film thickness shows a linear relationship with the supercooling conditions.The mass transfer coefficient of CH_(4)molecules in hydrates ranges from 4.54×10^(-8)to 7.54×10^(-8)mol·cm^(-2)·s^(-1)·MPa^(-1).The maximum mass transfer coefficient for CO_(2)t N_(2)hydrate occurs at the composition of 60%CO_(2)t 40%N_(2),which is 3.98×10^(-8)mol·cm^(-2)·s^(-1)·MPa^(-1).展开更多
Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexib...Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.展开更多
基金supported by Innovative Team Introduction Projects for New Universities in Jinan City(No.2021GXRC075).
文摘Helically coiled tube-in-tube(HCTT)heat exchangers are widely applied to the process technology because of their compactness and higher heat transfer efficiency.HCTT heat exchangers play an important role in liquified natural gas(LNG)use and cold energy recovery.The heat transfer characteristics,pressure distribution,and degree of vaporization of LNG in HCTT heat exchangers are numerically investigated.By comparing the simulation results of the computational model with existing experimental results,the effectiveness of the computational model is verified.The numerical simulation results show the vapor volume fraction of the HCTT heat exchanger is related to the inlet Reynolds number,inner tube diameters,and helix diameter.The vapor volume fraction increases rapidly from the fourth to the seventh equal division points of the helix tube length.On condition that the inlet Reynolds number is greater than 33500,the pressure drop rate gradually increases.When the magnitude of the vapor volume fraction is below 0.2,the heat transfer coefficient increase rate is greater than that when the vapor volume fraction is above 0.2.The heat exchange efficiency of HCTT heat exchangers increases with the decrease of the ratio of helix diameter to inner tube diameter.
基金Supported by the Zhejiang Provincial Natural Science Foundation of China(LY16B060003)the National Natural Science Foundation of China(21776246)
文摘The effects of impeller type, stirring power, gas flow rate, and liquid concentration on the gas–liquid mixing in a shear-thinning system with a coaxial mixer were investigated by experiment, and the overall gas holdup, relative power demand, and volumetric mass transfer coefficient under different conditions were compared. The results show that, the increasing stirring power or gas flow rate is beneficial in promoting the overall gas holdup and volumetric mass transfer coefficient, while the increasing system viscosity weakens the mass transfer in a shearing–thinning system. Among the three turbines, the six curved-blade disc turbine(BDT-6) exhibits the best gas pumping capacity; the six 45° pitched-blade disc turbine(PBDT-6) has the highest volumetric mass transfer coefficient at the same unit volume power.
文摘This paper describes the application of ultrasound waves on hydrodynamics and mass transfer characteristics in the gas–liquid flow in a T-shape microreactor with a diameter of 800 μm. A 1.7 MHz piezoelectric transducer(PZT) was employed to induce the vibration in this microreactor. Liquid side volumetric mass transfer coefficients were measured by physical and chemical methods of CO_2 absorption into water and Na OH solution. The approach of absorption of CO_2 into a 1 mol·L^(-1) Na OH solution was used for analysis of interfacial areas. With the help of a photography system, the fluid flow patterns inside the microreactor were analyzed. The effects of superficial liquid velocity, initial concentration of Na OH, superficial CO_2 gas velocity and length of microreactor on the mass transfer rate were investigated. The comparison between sonicated and plain microreactors(microreactor with and without ultrasound) shows that the ultrasound wave irradiation has a significant effect on kLa and interfacial area at various operational conditions. For the microreactor length of 12 cm, ultrasound waves improved kLa and interfacial area about 21% and 22%, respectively. From this study, it can be concluded that ultrasound wave irradiation in microreactor has a great effect on the mass transfer rate. This study suggests a new enhancement technique to establish high interfacial area and kLa in microreactors.
基金supported by Beijing Novel Program, China (Grant No. 2008B16)
文摘In order to predict the pressure drop, collection efficiency, velocity, temperature and mole fraction of vapor in an industrial venturi scrubber with water spraying for converter gas cooling, a three-dimensional model of heat and mass transfer with phase change is established. The gas flow and liquid droplets are treated as a continuous phase with a Eulerian approach and as a discrete phase with a Lagrangian approach, respectively. The coupled problem of heat, force, and mass transfers between gas flow and liquid droplets is solved by a commercial computational fluid dynamics(CFD) package, FLUENT. The numerical results show that the water injections have an important influence on the distributions of pressure, velocity, temperature, and mole fraction of vapor, especially for the spraying region in the throat. In the spraying region, the pressure drop is higher and the velocity is lower than in other regions due to the gas-droplet drag, while the temperature is lower because the droplet absorbs large amounts of heat from the high temperature gas and the mole fraction of vapor is higher due to the phase change of the liquid droplet. A number of cases with different Water-to-gas volume flow ratios and baffle openings were simulated. The dependence of pressure drop, velocity, temperature, mole fraction of vapor, and collection efficiency on both the water-to-gas volume flow ratio and baffle opening are analyzed. The good agreements between simulation results and experiment data of pressure drop, temperature, and collection efficiency validate the model. The model should facilitate optimization of the venturi scrubber design in order to give better performance with lower pressure drops and higher collection efficiency.
基金the authors appreciate the vice-chancellor of research and technology of the University of Isfahan for supporting this work under Grant No.911401707。
文摘The hydrodynamics and mass transfer characteristics of a lab-scale jet bubbling reactor(JBR)including the gas holdup,volumetric mass transfer coefficient and specific interfacial area were assessed experimentally investigating the influence of temperature,pH and superficial gas velocity.The reactor diameter and height were 11 and 30 cm,respectively.It was equipped with a single sparger,operating at atmospheric pressure,20 and 40℃,and two pH values of 3 and 6.The height of the liquid was 23 cm,while the superficial gas velocity changed within 0.010-0.040 m·s^(-1)range.Experiments were conducted with pure oxygen as the gas phase and saturated lime solution as the liquid phase.The liquid-side volumetric mass transfer coefficient was determined under unsteady-state oxygen absorption in a saturated lime solution.The gas holdup was calculated based on the liquid height change,while the specific interfacial area was obtained by a physical method based on the bubble size distribution(BSD)in different superficial gas velocities.The results indicated that at the same temperature but different pH,the gas holdup variation was negligible,while the liquid-side volumetric mass transfer coefficient at the pH value of 6 was higher than that at the pH=3.At a constant pH but different temperatures,the gas holdup and the liquid-side volumetric mass transfer coefficients at 40℃were higher than that of the same at 20℃.A reasonable and appropriate estimation of the liquid-side volumetric mass transfer coefficient(kla)in a pilot-scale JBR was provided which can be applied to the design and scale-up of JBRs.
基金Project(51674096)supported by the National Natural Science Foundation of ChinaProject(E2016203119)supported by Hebei Natural Science Foundation of ChinaProject(18211045)supported by the Key Research and Development Foundation in Hebei Province of China
文摘Cooling strength is one of the important factors affecting microstructure and properties of gas cylinders during quenching process,and reasonable water spray volume can effectively improve the quality of gas cylinders and reduce production costs.To find the optimal water spray parameters,a fluid-solid coupling model with three-phase flow was established in consideration of water-vapor conversion.The inner and outer walls of gas cylinder with the dimensions of d914 mm×38 mm×12000 mm were quenched using multi-nozzle water spray system.The internal pressure,average heat transfer coefficient(have)and stress of the gas cylinder under different water spray volumes during quenching process were studied.Finally,the mathematical model was experimentally verified.The results show that both the internal pressure and have increase along with the increase of spray volume.The internal pressure increases slowly first and then rapidly,but have increases rapidly first and then slowly.To satisfy hardenability of gas cylinders,the minimum spray volume should not be less than 40 m^3/(h·m).The results of stress indicate that water spray quenching will not cause deformation of bottle body in the range of water volume from 40 to 290 m^3/(h·m).
基金Projects 50534090 and 50674090 supported by the National Natural Science Foundation of China2005CB221503 by the National Key Basic ResearchDevelopment Program (973 Program)
文摘In order to simulate field distribution rules,mathematical models for 3-D air flows and gas transfer in the goaf of the coal mining are established,based on theories of permeability and dynamic dispersion through porous media. A gas dispersion equation in a 3-D field is calculated by use of numerical method on a weighted upstream multi-element balance. Based on data of an example with a U type ventilation mode,surface charts of air pressure distribution and gas concentration are drawn by Graphtool software. Finally,a comparison between actually measured results in the model test and the numerical simulation results is made to proves the numerical implementation feasible.
基金supported by the Opening Project Foundation of MOE Key Laboratory of Liquid Structure and Heredity of Materials and Natural Science foundation of Shandong Province(Grant NO.Y20002F24).
文摘Using Xenon lamp lights to overcome the strong interference from the welding arc, a computer-based system is developed to sense and visualize the metal transfer in GMAW. This system combines through-the-arc sensing of the welding current and arc voltage with high speed imaging of the metal transfer. It can simultaneously display the metal transfer processes and waveforms of electrical welding parameters in real-time The metal transfer videos and waveforms of electrical welding parameters can be recorded. Metal transfers under various welding conditions have been investigated with the system developed.
文摘The results stemming from the calculation of heat transfer in torch furnaces by the laws, relating to radiation from solid surfaces and gas volumes are analyzed. The article presents the laws for radiation from gas volumes and the procedure for calculating heat transfer in torch furnaces, fire boxes, and combustion chambers, elaborated on their basis. The example of heat transfer calculation in a torch furnace is given, and it is significantly non-uniform in nature. Non-uniformity of heat flux distribution on heating surfaces is given. According to the results of calculations, a new furnace is designed to decrease the non-uniformity of ingot heating, fuel rate, and increase the furnace capacity. The calculation results of the distribution of heat fluxes on the heating surfaces are given in changing torch geometric dimensions. These results are confirmed by experimental studies.
文摘1 INTRODUCTIONIt is well known that the throughput of many gas-liquid reactors is limited by the rate atwhich a gaseous component can be transferred from the gas to the liquid.For example,it isthe oxygen transfer capacity of a fermentor that set the upper limit to the productivity ofmost aerobic fermentation.Therefore,studies have been in progress to increase the masstransfer rate between the gas bubble and the broth by acting on classical parameters of bubblesize and the turbulence of flow.However,the intensive turbulence of flow usually
文摘A new method for measuring the solid flow rate in gas solid two phase flow is introduced in this paper. An electrically heated probe was put in a gas solid two phase flow. For certain solid particles, the flow media with different velocities and concentrations of particles produced different effects on heat transfer with the probe. The solid flow rate can be measured according to the intensity of heat transfer. Experiments were made on a pilot pneumatic conveying device. Research results prove that the method works effectively and reliably.
基金Supported by the National Natural Science Foundation of China(U1862103).
文摘In this work,the solubility data and liquid-phase mass transfer coefficients of hydrogen(H2),methane(CH4)and their mixtures in vacuum gas oil(VGO)at temperatures(353.15-453.15 K)and pressures(1-7 MPa)were measured,which are necessary for catalytic cracking process simulation and design.The solubility of H2 and CH4 in VGO increases with the increase of pressure,but decreases with the increase of temperature.Henry’s constants of H2 and CH4 follow the relation of In H=-413.05/T+5.27 and In H=-990.67/T+5.87,respectively.The molar fractions of H2 and system pressures at different equilibrium time were measured to estimate the liquid-phase mass transfer coefficients.The results showed that with the increase of pressure,the liquid-phase mass transfer coefficients increase.Furthermore,the solubility of H2 and CH4 in VGO was predicted by the predictive COSMO-RS model,and the predicted values agree well with experimental data.In addition,the gas-liquid equilibrium(GLE)for H2+CH4+VGO system at different feeding gas ratios in volume fraction(i.e.,H285%+CH415%and H290%+CH410%)was measured.The selectivity of H2 to CH4 predicted by the COSMO-RS model agrees well with experimental data.This work provides the basic thermodynamic and dynamic data for fuel oil catalytic cracking processes.
基金supported by the Foundation of the State Education Commission for doctoral students
文摘Mass transfer at hydrogen evolving mercury electrode has been studied by determining mass transfer coefficients of indicator ions as the function of current density of hydrogen evolution for various kinds of indica tor ions in sulphuric acid solution.Mercury adhering to metal substrates of Ni,Cu or Ag is used as mercury electrode to overcome its trembling during the electrolysis.The effect of difTerent indicator ions,electrode character istic,substrate material,diameter of electrode and temperature is examined.It is found that the transfer coefficient is proportional to the mass square root of current density of hydrogen evolution.
基金The project supported by the National Natural Science Foundation of China (19889209)Russian Foundation for Basic Research (97-02-16943)
文摘Heat and mass transfer of a porous permeable wall in a high temperature gas dynamical flow is considered. Numerical simulation is conducted on the ground of the conjugate mathematical model which includes filtration and heat transfer equations in a porous body and boundary layer equations on its surface. Such an approach enables one to take into account complex interaction between heat and mass transfer in the gasdynamical flow and in the structure subjected to this flow. The main attention is given to the impact of the intraporous heat transfer intensity on the transpiration cooling efficiency.
文摘High-speed photography is utilized to capture an image of the arc area during the welding process.The variation in arc shape and droplet transfer behavior is compared when employing shielding gases of different components and proportions(e.g.,80%Ar+20%CO_(2),85%Ar+10%CO_(2)+5%O2,65%Ar+26.5%He+8%CO_(2)+0.5%O2)using a Ф1.2 mm welding wire under 360 A current.Furthermore,the effects of various shielding gas components on the stability of the welding process are discussed.It was determined that the addition of oxygen and helium changed the arc’s shape and the behavior of the droplet transfer,and the welding process stability increased.
文摘A cold Rydberg gas, with its atoms prepared initially all in the excited state <span style="white-space:nowrap;">|<em>n</em><sub>0</sub>></span> , with <em>n</em><sub>0 </sub><span style="white-space:nowrap;">»</span>1, contains an excessive amount of energy, and presumably is to relax by the Penning-type <em>molecular auto-ionization</em> (<em>MAI</em>), in which a portion of excess energy of one atom is given to another near-by atom and ionizing it. Its complementary process, the <em>resonant energy transfer</em> (<em>RET</em>), is discussed, in which the excess energy of one atom is used on another to form a hyper-excited atomic state <span style="white-space:normal;">|</span><em style="white-space:normal;">n</em><sub style="white-space:normal;"><em>a</em></sub><span style="white-space:normal;">></span> with <em>n</em><sub><em>a</em></sub><span style="white-space:nowrap;">»</span><em style="white-space:normal;">n</em><sub style="white-space:normal;">0</sub>. This process is always present, provided certain resonance energy conditions are satisfied. In this report, the <em>n</em><sub>0</sub> and density dependences of the RET rates are studied in detail, employing a simple model: 1) at low densities, the RET is mediated by the dipole-dipole coupling <em>V</em><sub><em>dd</em></sub> and its rates are generally much smaller than that of MAI, especially for small <em>n</em><sub>0</sub>. But 2) as the density increases, our model shows that the rates become of comparable magnitude or even larger than the MAI rates. The<em> V</em><sub><em>dd</em></sub> is no longer adequate. We, then construct a semi-empirical potential to describe the RET process. 3) At high densities, we show that the atomic orbital of <span style="white-space:normal;">|</span><em style="white-space:normal;">n</em><sub style="white-space:normal;"><em>a</em></sub><span style="white-space:normal;">></span> overlaps with that of neighboring atoms, and the electron-electron potential becomes prominent, resulting in much higher rates.
基金supported by National Key Research and Development Program(No.2016YFD0501402-04)National Natural Science Foundation of China(Nos.21776179,21621004)the Program for Changjiang Scholars and Innovative Research Team in University(No.IRT_15R46)。
文摘A pore-array intensified tube-in-tube microchannel(PA-TMC),which is characterized by high throughput and low pressure drop,was developed as a gas–liquid contactor.The sulfite oxidation method was used to determine the oxygen efficiency(φ)and volumetric mass transfer coefficient(k_(L)a)of PA-TMC,and the mass transfer amount per unit energy(ε)was calculated by using the pressure drop.The effects of structural and operating parameters were investigated systematically,and the twophase flow behavior was monitored by using a charge-coupled device imaging system.The results indicated that the gas absorption efficiency and mass transfer performance of the PA-TMC were improved with increasing pore number,flow rate,and number of helical coil turns and decreasing pore size,row number,annular size,annular length,and surface tension.Theφ,εand k La of PA-TMC could reach 31.3%,1.73×10^(-4) mol/J,and 7.0 s-1,respectively.The Sherwood number was correlated with the investigated parameters to guide the design of PA-TMC in gas absorption and mass transfer processes.
基金financially supported by the National Natural Science Foundation of China(52106002,22378424)Natural Science Foundation of Hunan Province(2023JJ40026)+2 种基金Hunan Provincial Department of Education Scientific Research Project(22B0310)Natural Science Foundation of Guangdong Province(2021A1515010578,2020A1515110693)Shanghai Key Laboratory of Multiphase Materials Chemical Engineering(MMCE2023001).
文摘The morphology characteristics of CH_(4),CO_(2),and CO_(2)+N_(2)hydrate film forming on the suspending gas bubbles are studied using microscopic visual method at supercooling conditions from 1.0 to 3.0 K.The hydrate film vertical growth rate and thickness along the planar gas-water interface are measured to study the hydrate formation kinetics and mass transfer process.Adding N_(2)in the gas mixture plays the same role as lowering the supercooling conditions,both retarding the crystal nucleation and growth rates,which results in larger single crystal size and rough hydrate morphology.N_(2)in the gas mixture helps to delay the secondary nucleation on the hydrate film,which is beneficial to maintain the porethroat structure and enhance the mass transfer.The vertical growth rate of hydrate film mainly depends on the supercooling conditions and gas compositions but has weak dependence on the experimental temperature and pressure.Under the same gas composition condition,the final film thickness shows a linear relationship with the supercooling conditions.The mass transfer coefficient of CH_(4)molecules in hydrates ranges from 4.54×10^(-8)to 7.54×10^(-8)mol·cm^(-2)·s^(-1)·MPa^(-1).The maximum mass transfer coefficient for CO_(2)t N_(2)hydrate occurs at the composition of 60%CO_(2)t 40%N_(2),which is 3.98×10^(-8)mol·cm^(-2)·s^(-1)·MPa^(-1).
基金supported by the Natural Science Research Project of Guangling College of Yangzhou University,China (ZKZD18004)General Program of Natural Science Research in Higher Education Institutions of Jiangsu Province,China (20KJD430006)。
文摘Gas flexible pipes are critical multi-layered equipment for offshore oil and gas development.Under high pressure conditions,small molecular components of natural gas dissolve into the polymer inner liner of the flexible pipes and further diffuse into the annular space,incurring annular pressure build-up and/or production of acidic environment,which poses serious challenges to the structure and integrity of the flexible pipes.Gas permeation in pipes is a complex phenomenon governed by various factors such as internal pressure and temperature,annular structure,external temperature.In a long-distance gas flexible pipe,moreover,gas permeation exhibits non-uniform features,and the gas permeated into the annular space flows along the metal gap.To assess the complex gas transport behavior in long-distance gas flexible pipes,a mathematical model is established in this paper considering the multiphase flow phenomena inside the flexible pipes,the diffusion of gas in the inner liner,and the gas seepage in the annular space under varying permeable properties of the annulus.In addition,the effect of a variable temperature is accounted.A numerical calculation method is accordingly constructed to solve the coupling mathematical equations.The annular permeability was shown to significantly influence the distribution of annular pressure.As permeability increases,the annular pressure tends to become more uniform,and the annular pressure at the wellhead rises more rapidly.After annular pressure relief followed by shut-in,the pressure increase follows a convex function.By simulating the pressure recovery pattern after pressure relief and comparing it with test results,we deduce that the annular permeability lies between 123 and 512 m D.The results help shed light upon assessing the annular pressure in long distance gas flexible pipes and thus ensure the security of gas transport in the emerging development of offshore resources.