In-system programmable devices are products that combined modern electronic techniques and semiconductor techniques.They are indispensable devices in designing modern circuits and systems.This paper presents two pract...In-system programmable devices are products that combined modern electronic techniques and semiconductor techniques.They are indispensable devices in designing modern circuits and systems.This paper presents two practical circuits designed with programmable devices and its design method.By introducing programmable devices into gas sensor circuits,we can further improve system reliability,stability,sensitivity and integration degree,and enhance flexibility of system design.展开更多
A new type of solid polymer electrolyte based on polyacrylonitrile (PAN )-dimethylsulfoxide (DMSO)-tetrabutylammonium perchlorate (TBAP) system has been prepared. The ionic conductivities of such solid-electrolytes re...A new type of solid polymer electrolyte based on polyacrylonitrile (PAN )-dimethylsulfoxide (DMSO)-tetrabutylammonium perchlorate (TBAP) system has been prepared. The ionic conductivities of such solid-electrolytes reach values as high as 10-4 S. cm-1 at room temperature. At proper content of each component in the solid-electrolyte the polymeric film has a porous network microstructure of three dimen-sions,and exhibits a good level of mechanical properties and dimensional stability. The full-solid-state elec-trochemical cell contains two coplanar electrodes coated by a thin layer of PAN-DMSO-TBAP solid-elec-trolyte: a Au microdisk as working electrode and a Ag ring counter/reference electrode. This study has shown that the integrated two-electrode assembly can be directly used for the amperometric solid-state car-bon dioxide gas sensor devices,and it shows good response characteristics for direct amperometric determi-nation of the CO2 concentration in the gas phase. Also, such full-solid-state amperometric sensor devices possess their own original advantages.展开更多
Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring.Gas sensors based on conventional bulk materials often suffer from their poor surfa...Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring.Gas sensors based on conventional bulk materials often suffer from their poor surface-sensitive sites,leading to a very low gas adsorption ability.Moreover,the charge transportation efficiency is usually inhibited by the low defect density of surface-sensitive area than that in the interior.In this work,a gas sensing structure model based on CuS quantum dots/Bi_(2)S_(3) nanosheets(CuS QDs/Bi_(2)S_(3) NSs)inspired by artificial neuron network is constructed.Simulation analysis by density functional calculation revealed that CuS QDs and Bi_(2)S_(3) NSs can be used as the main adsorption sites and charge transport pathways,respectively.Thus,the high-sensitivity sensing of NO_(2) can be realized by designing the artificial neuron-like sensor.The experimental results showed that the CuS QDs with a size of about 8 nm are highly adsorbable,which can enhance the NO_(2) sensitivity due to the rich sensitive sites and quantum size effect.The Bi_(2)S_(3) NSs can be used as a charge transfer network channel to achieve efficient charge collection and transmission.The neuron-like sensor that simulates biological smell shows a significantly enhanced response value(3.4),excellent responsiveness(18 s)and recovery rate(338 s),low theoretical detection limit of 78 ppb,and excellent selectivity for NO_(2).Furthermore,the developed wearable device can also realize the visual detection of NO2 through real-time signal changes.展开更多
This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation i...This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation in multi-waveguides was established first, the dispersion characteristic is depicted by the acoustic propagation theory of stratified media and boundary conditions. Combing with the dispersion characteristics and Tomar's method, the optimal structural parameters for the Love wave device with zero temperature coefficient were extracted, and confirmed by the following experimental results. Excellent temperature coefficient of the Love wave device with SU-8/SiO2 on ST-90°X quartz substrate was evaluated experimentally as only 2.16 ppm/℃, which agrees well with the calculated results. The optimized Love wave device is very promising in gas sensing application.展开更多
Wearable gas sensors that are lightweight, portable, and inexpensive have great potential application in the real-time detection of human health and environmental monitoring. In this work, we fabricated flexible fiber...Wearable gas sensors that are lightweight, portable, and inexpensive have great potential application in the real-time detection of human health and environmental monitoring. In this work, we fabricated flexible fiber gas sensors with single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT), and ZnO quantum dot-decorated SWCNT (SWCNTs@ZnO) sensing elements. These flexible fiber gas sensors could be operated at room temperature to detect target gases with good sensitivity and recovery time. They also exhibited superior long-term stability, as well as good device mechanical bending ability and robustness. Integrating these flexible gas sensors into face masks, the fabricated wearable smart face masks could be used to selectively detect CaHsOH, HCHO, and NH3 by reading the corresponding LEDs with different colors. Such face masks have great potential application in the Internet of Things and wearable electronics.展开更多
Mn doped SnO2 nanobelts (Mn:SnO2 NBs) and pure SnO2 nanobelts (SnO2 NBs) were synthesized by thermal evaporation technique at 1355°C with Ar carrier gas (25 sccm, 150 Torr). The SEM, EDS, XRD, TEM, HRTEM, SAED, X...Mn doped SnO2 nanobelts (Mn:SnO2 NBs) and pure SnO2 nanobelts (SnO2 NBs) were synthesized by thermal evaporation technique at 1355°C with Ar carrier gas (25 sccm, 150 Torr). The SEM, EDS, XRD, TEM, HRTEM, SAED, XPS, UV-Vis techniques were used to characterize the attained samples. The band gap of Mn doped SnO2 NBs by UV-Vis was measured to be 3.43 eV at room temperature, lower than that of the pure counterpart with ~3.66 eV. Mn:SnO2 NB and pure SnO2 NB sensors were developed. It is found that Mn:SnO2 NB device exhibits a higher sensitivity with 62.12% to 100 ppm of ethanol at 210°C, which is the highest sensitivity among the three tested VOC gases (ethanol, ethanediol, and acetone). The theoretical detection limit for ethanol of the sensor is 1.1 ppm. The higher response is related to the selective catalysis of the doped Mn ions.展开更多
With the rapid development of portable devices and internet of things,the requirement of system wearability and integration accelerates the investigation of flexible multifunctional sensors.In this study,we developed ...With the rapid development of portable devices and internet of things,the requirement of system wearability and integration accelerates the investigation of flexible multifunctional sensors.In this study,we developed an integrated flexible sensing system with four nanowire-based sensors and a Ni microwire-based temperature sensor.The four nanowirebased sensors are three kinds of photodetectors responding to lights with different wavelengths and a gas sensor.Due to the large surface volume ratio and considerable sub wavelength effect,all the nanowire-based sensors show good sensing response and excellent linear relationship between sensitivity and temperature.The as-fabricated flexible sensing system can simultaneously detect environmental parameters,including temperature change,light intensities from UV-Visible to near infrared regions,and harmful gas concentration.Our flexible multifunctional sensing system therefore opens up a new way for the emerging portable and wearable electronics.展开更多
文摘In-system programmable devices are products that combined modern electronic techniques and semiconductor techniques.They are indispensable devices in designing modern circuits and systems.This paper presents two practical circuits designed with programmable devices and its design method.By introducing programmable devices into gas sensor circuits,we can further improve system reliability,stability,sensitivity and integration degree,and enhance flexibility of system design.
文摘A new type of solid polymer electrolyte based on polyacrylonitrile (PAN )-dimethylsulfoxide (DMSO)-tetrabutylammonium perchlorate (TBAP) system has been prepared. The ionic conductivities of such solid-electrolytes reach values as high as 10-4 S. cm-1 at room temperature. At proper content of each component in the solid-electrolyte the polymeric film has a porous network microstructure of three dimen-sions,and exhibits a good level of mechanical properties and dimensional stability. The full-solid-state elec-trochemical cell contains two coplanar electrodes coated by a thin layer of PAN-DMSO-TBAP solid-elec-trolyte: a Au microdisk as working electrode and a Ag ring counter/reference electrode. This study has shown that the integrated two-electrode assembly can be directly used for the amperometric solid-state car-bon dioxide gas sensor devices,and it shows good response characteristics for direct amperometric determi-nation of the CO2 concentration in the gas phase. Also, such full-solid-state amperometric sensor devices possess their own original advantages.
基金supported by the National Natural Science Foundation of China(61971284)the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University(SL2020ZD203 and SL2020MS031)+2 种基金Scientific Research Fund of Second Institute of Oceanography,Ministry of Natural Resources of P.R.China(SL2003)Shanghai Sailing Program(21YF1421400)Startup Fund for Youngman Research at Shanghai Jiao Tong University.
文摘Real-time rapid detection of toxic gases at room temperature is particularly important for public health and environmental monitoring.Gas sensors based on conventional bulk materials often suffer from their poor surface-sensitive sites,leading to a very low gas adsorption ability.Moreover,the charge transportation efficiency is usually inhibited by the low defect density of surface-sensitive area than that in the interior.In this work,a gas sensing structure model based on CuS quantum dots/Bi_(2)S_(3) nanosheets(CuS QDs/Bi_(2)S_(3) NSs)inspired by artificial neuron network is constructed.Simulation analysis by density functional calculation revealed that CuS QDs and Bi_(2)S_(3) NSs can be used as the main adsorption sites and charge transport pathways,respectively.Thus,the high-sensitivity sensing of NO_(2) can be realized by designing the artificial neuron-like sensor.The experimental results showed that the CuS QDs with a size of about 8 nm are highly adsorbable,which can enhance the NO_(2) sensitivity due to the rich sensitive sites and quantum size effect.The Bi_(2)S_(3) NSs can be used as a charge transfer network channel to achieve efficient charge collection and transmission.The neuron-like sensor that simulates biological smell shows a significantly enhanced response value(3.4),excellent responsiveness(18 s)and recovery rate(338 s),low theoretical detection limit of 78 ppb,and excellent selectivity for NO_(2).Furthermore,the developed wearable device can also realize the visual detection of NO2 through real-time signal changes.
基金supported by the National Nature Science Foundation of China(11074268,10834010)
文摘This paper aimed at extracting optimal structural parameters for Love wave device with structure of multi-waveguides to improve its temperature stability. The theoretical model dealing with the Love wave propagation in multi-waveguides was established first, the dispersion characteristic is depicted by the acoustic propagation theory of stratified media and boundary conditions. Combing with the dispersion characteristics and Tomar's method, the optimal structural parameters for the Love wave device with zero temperature coefficient were extracted, and confirmed by the following experimental results. Excellent temperature coefficient of the Love wave device with SU-8/SiO2 on ST-90°X quartz substrate was evaluated experimentally as only 2.16 ppm/℃, which agrees well with the calculated results. The optimized Love wave device is very promising in gas sensing application.
文摘Wearable gas sensors that are lightweight, portable, and inexpensive have great potential application in the real-time detection of human health and environmental monitoring. In this work, we fabricated flexible fiber gas sensors with single-walled carbon nanotube (SWCNT), multi-walled carbon nanotube (MWCNT), and ZnO quantum dot-decorated SWCNT (SWCNTs@ZnO) sensing elements. These flexible fiber gas sensors could be operated at room temperature to detect target gases with good sensitivity and recovery time. They also exhibited superior long-term stability, as well as good device mechanical bending ability and robustness. Integrating these flexible gas sensors into face masks, the fabricated wearable smart face masks could be used to selectively detect CaHsOH, HCHO, and NH3 by reading the corresponding LEDs with different colors. Such face masks have great potential application in the Internet of Things and wearable electronics.
文摘Mn doped SnO2 nanobelts (Mn:SnO2 NBs) and pure SnO2 nanobelts (SnO2 NBs) were synthesized by thermal evaporation technique at 1355°C with Ar carrier gas (25 sccm, 150 Torr). The SEM, EDS, XRD, TEM, HRTEM, SAED, XPS, UV-Vis techniques were used to characterize the attained samples. The band gap of Mn doped SnO2 NBs by UV-Vis was measured to be 3.43 eV at room temperature, lower than that of the pure counterpart with ~3.66 eV. Mn:SnO2 NB and pure SnO2 NB sensors were developed. It is found that Mn:SnO2 NB device exhibits a higher sensitivity with 62.12% to 100 ppm of ethanol at 210°C, which is the highest sensitivity among the three tested VOC gases (ethanol, ethanediol, and acetone). The theoretical detection limit for ethanol of the sensor is 1.1 ppm. The higher response is related to the selective catalysis of the doped Mn ions.
基金supported by the National Natural Science Foundation of China(61874111 and 61625404)the Young Elite Scientists Sponsorship Program by CAST(2018QNRC001)China Postdoctoral Science Foundation(2016M601131)。
文摘With the rapid development of portable devices and internet of things,the requirement of system wearability and integration accelerates the investigation of flexible multifunctional sensors.In this study,we developed an integrated flexible sensing system with four nanowire-based sensors and a Ni microwire-based temperature sensor.The four nanowirebased sensors are three kinds of photodetectors responding to lights with different wavelengths and a gas sensor.Due to the large surface volume ratio and considerable sub wavelength effect,all the nanowire-based sensors show good sensing response and excellent linear relationship between sensitivity and temperature.The as-fabricated flexible sensing system can simultaneously detect environmental parameters,including temperature change,light intensities from UV-Visible to near infrared regions,and harmful gas concentration.Our flexible multifunctional sensing system therefore opens up a new way for the emerging portable and wearable electronics.