期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Quantitative Variation in Water-Use Efficiency across Water Regimes and Its Relationship with Circadian, Vegetative, Reproductive, and Leaf Gas-Exchange Traits 被引量:6
1
作者 Christine E. Edwards Brent E. Ewers +2 位作者 C. Robertson McClung Ping Lou Cynthia Weinig 《Molecular Plant》 SCIE CAS CSCD 2012年第3期653-668,共16页
Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architectu... Drought limits light harvesting, resulting in lower plant growth and reproduction. One trait important for plant drought response is water-use efficiency (WUE). We investigated (1) how the joint genetic architecture of WUE, reproductive characters, and vegetative traits changed across drought and well-watered conditions, (2) whether traits with distinct developmental bases (e.g. leaf gas exchange versus reproduction) differed in the environmental sensitivity of their genetic architecture, and (3) whether quantitative variation in circadian period was related to drought response in Brassica rapa. Overall, WUE increased in drought, primarily because stomatal conductance, and thus water loss, declined more than carbon fixation. Genotypes with the highest WUE in drought expressed the lowest WUE in well-watered conditions, and had the largest vegetative and floral organs in both treatments. Thus, large changes in WUE enabled some genotypes to approach vegetative and reproductive trait optima across environments. The genetic architecture differed for gas-exchange and vegetative traits across drought and well-watered conditions, but not for floral traits. Correlations between circadian and leaf gas-exchange traits were significant but did not vary across treatments, indicating that circadian period affects physiological function regardless of water availability. These results suggest that WUE is important for drought tolerance in Brassica rapa and that artificial selection for increased WUE in drought will not result in maladaptive expression of other traits that are correlated with WUE. 展开更多
关键词 Brassica rapa drought ECOPHYSIOLOGY floral traits G matrix leaf gas-exchange traits water-use efficiency vegetative traits
原文传递
Biochar potentially enhances maize tolerance to arsenic toxicity by improving physiological and biochemical responses to excessive arsenate
2
作者 Md.Mezanur Rahman Ashim Kumar Das +13 位作者 Sharmin Sultana Protik Kumar Ghosh Md.Robyul Islam Sanjida Sultana Keya Minhaz Ahmed Sheikh Arafat Islam Nihad MdArifur Rahman Khan Mylea C.Lovell Md.Abiar Rahman S.M.Ahsan Touhidur Rahman Anik Pallavi Fnu Lam-Son Phan Tran Mohammad Golam Mostofa 《Biochar》 SCIE CAS CSCD 2023年第1期1222-1242,共21页
Metalloid pollution,including arsenic poisoning,is a serious environmental issue,plaguing plant productivity and quality of life worldwide.Biochar,a carbon-rich material,has been known to alleviate the negative effect... Metalloid pollution,including arsenic poisoning,is a serious environmental issue,plaguing plant productivity and quality of life worldwide.Biochar,a carbon-rich material,has been known to alleviate the negative effects of environmental pollutants on plants.However,the specific role of biochar in mitigating arsenic stress in maize remains relatively unexplored.Here,we elucidated the functions of biochar in improving maize growth under the elevated level of sodium arsenate(Na_(2)AsO_(4),AsV).Maize plants were grown in pot-soils amended with two doses of biochar(2.5%(B1)and 5.0%(B2)biochar Kg^(−1) of soil)for 5 days,followed by exposure to Na_(2)AsO_(4)(’B1+AsV’and’B2+AsV’)for 9 days.Maize plants exposed to AsV only accumulated substantial amount of arsenic in both roots and leaves,triggering severe phytotoxic effects,including stunted growth,leaf-yellowing,chlorosis,reduced photosynthesis,and nutritional imbalance,when compared with control plants.Contrariwise,biochar addition improved the phenotype and growth of AsV-stressed maize plants by reducing root-to-leaf AsV translocation(by 46.56 and 57.46%in‘B1+AsV’and‘B2+AsV’plants),improving gas-exchange attributes,and elevating chlorophylls and mineral levels beyond AsV-stressed plants.Biochar pretreatment also substantially counteracted AsV-induced oxidative stress by lowering reactive oxygen species accumulation,lipoxygenase activity,malondialdehyde level,and electrolyte leakage.Less oxidative stress in‘B1+AsV’and‘B2+AsV’plants likely supported by a strong antioxidant system powered by biochar-mediated increased activities of superoxide dismutase(by 25.12 and 46.55%),catalase(51.78 and 82.82%),and glutathione S-transferase(61.48 and 153.83%),and improved flavonoid levels(41.48 and 75.37%,respectively).Furthermore,increased levels of soluble sugars and free amino acids also correlated with improved leaf relative water content,suggesting a better osmotic acclimatization mechanism in biochar-pretreated AsV-exposed plants.Overall,our findings provided mechanistic insight into how biochar facilitates maize’s active recovery from AsV-stress,implying that biochar application may be a viable technique for mitigating negative effects of arsenic in maize,and perhaps,in other important cereal crops. 展开更多
关键词 Arsenic contamination Antioxidant defense system BIOCHAR gas-exchange attributes Nutrient dynamics Oxidative stress
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部