期刊文献+
共找到109篇文章
< 1 2 6 >
每页显示 20 50 100
Simulation of gas-solid flow characteristics of the circulating fluidized bed boiler under pure-oxygen combustion conditions
1
作者 Kaixuan Gao Xiwei Ke +5 位作者 Bingjun Du Zhenchuan Wang Yan Jin Zhong Huang Yanhong Li Xuemin Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第6期9-19,共11页
Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the convention... Under the pressure of carbon neutrality,many carbon capture,utilization and storage technologies have witnessed rapid development in the recent years,including oxy-fuel combustion(OFC)technology.However,the conventional OFC technology usually depends on the flue gas recirculation system,which faces significant investment,high energy consumption,and potential low-temperature corrosion problem.Considering these deficiencies,the direct utilization of pure oxygen to achieve particle fluidization and fuel combustion may reduce the overall energy consumption and CO_(2)-capture costs.In this paper,the fundamental structure of a self-designed 130 t·h^(-1) pure-oxygen combustion circulating fluidized bed(CFB)boiler was provided,and the computational particle fluid dynamics method was used to analyze the gas-solid flow characteristics of this new-concept boiler under different working conditions.The results indicate that through the careful selection of design or operational parameters,such as average bed-material size and fluidization velocity,the pure-oxygen combustion CFB system can maintain the ideal fluidization state,namely significant internal and external particle circulation.Besides,the contraction section of the boiler leads to the particle backflow in the lower furnace,resulting in the particle suspension concentration near the wall region being higher than that in the center region.Conversely,the upper furnace still retains the classic core-annulus flow structure.In addition to increasing solid circulation rate by reducing the average bed-material size,altering primary gas ratio and bed inventory can also exert varying degrees of influence on the gas-solid flow characteristics of the pure-oxygen combustion CFB boiler. 展开更多
关键词 circulating fluidized bed Pure-oxygen combustion gas-solid flow characteristics SIMULATION CO_(2)capture
下载PDF
EXPERIMENTAL RESEARCH OF FLOW STRUCTURE IN A GAS-SOLID CIRCULATING FLUIDIZED BED RISER BY PIV 被引量:10
2
作者 SHI Hui-xian 《Journal of Hydrodynamics》 SCIE EI CSCD 2007年第6期712-719,共8页
Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-struct... Particle Imaging Velocimetry (PIV) techniques were applied to investigate the particle motion and cluster properties in a gas-solid two-phase flow in a circulating fluidized bed riser. Visual images and micro-structure of various clusters were captured. After the boundary of clusters was determined by the gray level threshold method, clusters were classified by the distance between particles and the shape and position of clusters. In addition, the process of clusters forming and breaking up was described, and the sizes of clusters were also obtained. With the Minimum Quadric Difference (MQD) cross-correlation algorithm suitable for high-density particles, the axial velocities of the particles were obtained in the dilute phase section. The features of particle motion were revealed by investigating statistically the magnitude and distribution of particle axial velocity in the radial direction. At most radial cross-sections, there exists a parabola-shaped distribution of upward axial velocity of particles, namely, the magnitude of axial velocity in the core region is higher than that near the wall region of the riser. 展开更多
关键词 Particle Imaging velocimetry (PIV) gas-solid two-phase flow circulating fluidized bed (CFB) Minimum Quadric Difference (MQD)
原文传递
Particle clustering(mesoscale structure)of high-flux gas-solid circulating fluidized bed 被引量:3
3
作者 Chengxiu Wang Chengxiang Li +2 位作者 Xingying Lan Yingya Wu Jinsen Gao 《Particuology》 SCIE EI CAS CSCD 2020年第1期144-159,共16页
Particle clustering is an important dynamic phenomenon in circulating-fluidized-bed(CFBs)systems,and has been suggested as a key contributing factor to the non-uniform hydrodynamics of CFBs.Studies show that particle ... Particle clustering is an important dynamic phenomenon in circulating-fluidized-bed(CFBs)systems,and has been suggested as a key contributing factor to the non-uniform hydrodynamics of CFBs.Studies show that particle clusters can be affected by solids flux,in terms of frequency,duration,and solids holdup.To understand the characteristics of particle clusters under high-solids-flux conditions,experimental and modeling studies in high-solids-flux gas-solids CFBs were reviewed and summarized.Optical and electrical measurements and imaging methods were used to monitor the particle-clustering phenomenon in CFBs.Particles were found to cluster in high-flux CFBs,and were characterized by a denser cluster-solids holdup and a shorter time fraction,which was different from the behavior in low-flux CFBs.Particle properties affected particle clustering in high-flux CFBs significantly.In modeling work,Eulerian-Eulerian and Eulerian-Lagrangian methods were used to study the particle-cluster characteristics.Good results can be obtained by using the Eulerian-Eulerian method to simulate the CFB system,especially the high-flux CFBs,and by considering the effects of particle clusters.The Eulerian-Lagrangian method is used to obtain detailed cluster characteristics.Because of limits in computing power,no obvious results exist to model particle clusters under high-solids-flux conditions.Because high-solids-flux conditions are used extensively in industrial applications,further experimental and numerical investigations on the clustering behavior in HF/DCFBs are required. 展开更多
关键词 High-flux circulating fluidized bed Mesoscale structure Particle cluster Numerical simulation gas-solids hydrodynamics
原文传递
Experimental Study on Gas-Solid Mass Transfer in Circulating Fluidized Beds 被引量:3
4
作者 王琳娜 张苓 +1 位作者 靳东杰 李静海 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2002年第1期70-76,共7页
This study is devoted to gas-solid mass transfer behavior inheterogeneous two-phase flow. Experiments were carried out in a coldcirculating fluidized bed of 3.0 m in height and 72 mm in diameterwith naphthalene partic... This study is devoted to gas-solid mass transfer behavior inheterogeneous two-phase flow. Experiments were carried out in a coldcirculating fluidized bed of 3.0 m in height and 72 mm in diameterwith naphthalene particles. Axial and radial distributions ofsublimated naphthalene concentration in air were measured with an on-line concentration monitoring system HP GC-MS. Mass transfercoefficients were obtained under various operating conditions,showing that heterogeneous flow structure strongly influences theaxial and radial profiles of mass transfer coefficients. 展开更多
关键词 mass transfer circulating fluidized bed gas-solid heterogeneous flow
下载PDF
Flow Field of Circulating Fluidized Bed Reactor with Venturi Inlet Configuration
5
作者 胡金榜 李艳平 陈安新 《Transactions of Tianjin University》 EI CAS 2005年第2期106-109,共4页
Different two-equation k-ε models were used to simulate the gas flow field generated by a new type of circulating fluidized bed reactor with venturi gas distributor. The numerical results were compared with the exper... Different two-equation k-ε models were used to simulate the gas flow field generated by a new type of circulating fluidized bed reactor with venturi gas distributor. The numerical results were compared with the experimental data. It has been shown that the simulation results from the standard k-ε model have the best match with the experimental data. Based on this model, the gas flow field in the venturi diffuser and riser was analyzed by the concept of velocity nonuniformity and dead zone percentage. Both the nonuniformity of gas velocity and the dead zone percentage reach the maximum at the venturi outlet due to the effect of the vortex. At the same time, it provides a good platform for the further optimization of the inlet configuration of circulating fluidized bed reactor. 展开更多
关键词 circulating fluidized bed reactor venturi gas distributor numerical simulation velocity nonuniformity dead zone percentage
下载PDF
CFD simulation of pressure fluctuation characteristics in the gas-solid fluidized bed:Comparisons with experiments 被引量:3
6
作者 Wang Qingcheng Zhang Kai Gu Hongyan 《Petroleum Science》 SCIE CAS CSCD 2011年第2期211-218,共8页
A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctua... A simple hydrodynamic model based on two-fluid theory, taking into account the effect of discrete particles on both the gas- and solid-phase momentum equations, was used to numerically investigate the pressure fluctuation characteristics in a gas-solid fluidized bed with the aid of CFX 4.4, a commercial CFD software package, by adding user-defined Fortran subroutines. Numerical simulations together with typical experimental measurements show that pressure fluctuations originate above the distributor when a gas pulse is injected into the fluidized bed. The pressure above the bubble gradually increases due to the presence of a rising bubble. When the bubble passes through the bed surface, the pressure near the bed surface gradually decreases to a lower value. Moreover, the pressure signals in the bubbling fluidized beds show obviously periodic characteristics. The major frequency of pressure fluctuations at the same vertical position is affected slightly by the operating gas velocity, and the amplitude of pressure fluctuations is related to both the operating gas velocity and the vertical height. In this study, the influence of the operating gas velocity on the pressure wave propagation velocity can be ignored, and only two peak frequencies in the power spectrum of the pressure fluctuations are observed which are associated with the bubble formation above the distributor and its eruption at the bed surface. 展开更多
关键词 gas-solid fluidized bed CFD simulation experimental measurements propagation ofpressure fluctuations pressure wave velocity pressure fluctuation frequency
下载PDF
Simulation of the L-valve in the circulating fluidized bed with a coarse-grained discrete particle method
7
作者 Ruixiang Tang Zheng Zou +3 位作者 Ji Xu Junwu Wang Qingshan Zhu Hongzhong Li 《Particuology》 SCIE EI CAS CSCD 2024年第7期266-280,共15页
Stable and controllable solid flow is essential in circulating fluidized bed (CFB) systems. The L-valve is a typical non-mechanical valve that can provide flexible solid feeding. The investigation of the solid circula... Stable and controllable solid flow is essential in circulating fluidized bed (CFB) systems. The L-valve is a typical non-mechanical valve that can provide flexible solid feeding. The investigation of the solid circulation rate and the hydrodynamic characteristics of the L-valve is crucial to its design and operation. The gas-solid flow in the L-valve of a full-loop CFB is studied with the coarse-grained discrete particle method (EMMS-DPM). Good agreements on the solid circulation rate and the pressure drop through the L-valve are achieved between the simulated and experimental data. The solid circulation rate increases linearly with the aeration velocity until the stable particle circulation of the CFB is destroyed. The flow patterns in the horizontal section of L-valve are gas-solid slug flow above the stationary solid layer and the moving solid layer, respectively. The effects of L-valve geometric parameters on the solid flow characteristics are also investigated. The results indicate that reducing the diameter and length of the horizontal section of L-valve can improve the solid transport efficiency, especially at low aeration velocity. Besides, the solid conveying capacity and flow stability are improved when the sharp bend of L-valve is modified to be a gradual bend. 展开更多
关键词 L-valve circulating fluidized bed Full loop Discrete particle method gas-solid flow
原文传递
Temperature influence on minimum fluidization velocity:Complexity,mechanism,and solutions 被引量:1
8
作者 Qingjin Zhang Liangliang Fu +1 位作者 Guangwen Xu Dingrong Bai 《Particuology》 SCIE EI CAS CSCD 2024年第5期344-349,共6页
Fluidized-bed reactors are widely employed in various high-temperature industrial processes.Thus,it is crucial to understand the temperature effect on various fluidization phenomena,specifically the minimum fluidizati... Fluidized-bed reactors are widely employed in various high-temperature industrial processes.Thus,it is crucial to understand the temperature effect on various fluidization phenomena,specifically the minimum fluidization velocity(U_(mf))that governs various aspects of fluidized bed behavior.In this study,we comprehensively analyze U_(mf) data from the literature to unravel the complexity and underlying mechanisms of temperature influence on this critical velocity.The research examines experimental data encompassing a wide range of temperatures,pressures,and solid particles.The analysis reveals that the influence of temperature on U_(mf) is fundamentally determined by the relative importance of hydrodynamic forces and interparticle forces within fluidized beds and is realized by three distinctive temperature-induced changes:gas properties,bed voidage,and physiochemical characteristics of particles.On this basis,an equation is derived to enable predictions of temperature influences on the minimum fluidization velocity under broad temperature conditions. 展开更多
关键词 High-temperature gas-solids fluidized beds Minimum fluidization velocity Hydrodynamic forces Interparticle forces bed voidage
原文传递
Comparative study of two fluid model and dense discrete phase model for simulations of gas-solid hydrodynamics in circulating fluidized beds 被引量:4
9
作者 Ying Wu Daoyin Liu +2 位作者 Jinding Hu Jiliang Ma Xiaoping Chen 《Particuology》 SCIE EI CAS CSCD 2021年第2期108-117,共10页
Computational fluid dynamics(CFD)has become a valuable tool to study the complex gas-solid hydrodynamics in the circulating fluidized bed(CFB).Based on the two fluid model(TFM)under the Eulerian-Eulerian framework and... Computational fluid dynamics(CFD)has become a valuable tool to study the complex gas-solid hydrodynamics in the circulating fluidized bed(CFB).Based on the two fluid model(TFM)under the Eulerian-Eulerian framework and the dense discrete phase model(DDPM)under the Eulerian-Lagrangian framework,this work conducts the comparative study of the gas-solid hydrodynamics in a CFB riser by these two different models.Results show that DDPM could be used to predict gas-solid hydrodynamics in the circulating fluidized bed,and there are differences between TFM and DDPM,especially in the radial distribution profiles of solid phase.Sensitivity analysis results show that the gas-solid drag model exhibits significant effects on the results for both the two models.The specularity coefficient and the restitution coefficient in the TFM,as well as the reflection coefficient and the parcel number in the DDPM,exhibit less impact on the simulated results. 展开更多
关键词 CFD simulation circulating fluidized bed gas-solid flow Two fluid model Dense discrete phase model
原文传递
Anti-wear beam effects on gas-solid hydrodynamics in a circulating fluidized bed 被引量:3
10
作者 Yunfei Xia Leming Cheng +3 位作者 Chunjiang Yu Linjie Xu Qinhui Wang Mengxiang Fang 《Particuology》 SCIE EI CAS CSCD 2015年第2期173-184,共12页
Anti-wear beams installed on water walls of circulating fluidized bed (CFB) boilers are one of the most effective ways to protect against water-wall erosion. Beam effects from, for example, beam size and superficial... Anti-wear beams installed on water walls of circulating fluidized bed (CFB) boilers are one of the most effective ways to protect against water-wall erosion. Beam effects from, for example, beam size and superficial gas velocity were investigated on gas-solid hydrodynamics in a CFB test rig using CFD simulations and experimental methods. The downward flow of the wall layer solids is observed to be disrupted by the beam but is then restored some distance further downstream. When falling solids from the wall layer hit the anti-wear beam, the velocity of the falling solids decreases rapidly. A fraction of the solids accumulates on the beam. Below the beams, the falling solids have reduced velocities but upward-moving solids were observed on the wall. The effect of the beam increases with width and superficial gas velocity. Wear occurs mainly above the beam and its variation with width is different above to below the beam. There is an optimum width that, when combined with beam height, results in less erosion. 展开更多
关键词 circulating fluidized bed gas-solid hydrodynamics Anti-wear beam
原文传递
Numerical investigations on gas-solid flow in circulating fluidized bed risers using a new cluster-based drag model 被引量:2
11
作者 Zeneng Sun Chao Zhang Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2022年第4期9-23,共15页
A cluster-based drag model is proposed for the gas-solid circulating fluidized bed(CFB)riser by including the cluster information collected from image processing and wavelet analysis into the calculation of system dra... A cluster-based drag model is proposed for the gas-solid circulating fluidized bed(CFB)riser by including the cluster information collected from image processing and wavelet analysis into the calculation of system drag.The performance of the proposed drag model is compared with some commonly used drag models.A good agreement with the experimental data is achieved by the proposed cluster-based drag model.Error analysis of the proposed cluster-based drag model based on the local distributions of solids holdup and particle velocity is conducted.The clustering phenomenon in the low-density and high-density CFB risers and the effect of the cluster size on the simulation accuracy are also numerically studied by the proposed drag model. 展开更多
关键词 Drag model Clustering effect gas-solid flow structures circulating fluidized bed
原文传递
Gas-solid flow in a high-density circulating fluidized bed riser with Geldart group B particles 被引量:5
12
作者 Jian Chang KaiZhang +1 位作者 Wenqi Zhu Yongping Yang 《Particuology》 SCIE EI CAS CSCD 2016年第6期103-109,共7页
We carried out experiments to explore and characterize the gas-solid flow dynamics of Geldart group B particles in a dense circulating fluidized bed riser. By reducing the pressure drop across the solid control valve ... We carried out experiments to explore and characterize the gas-solid flow dynamics of Geldart group B particles in a dense circulating fluidized bed riser. By reducing the pressure drop across the solid control valve and increasing the solid inventory in the storage tank, a high solid circulation rate and a solid holdup above 0.075 throughout the riser were simultaneously achieved. At a solid-to-gas mass flux ratio of approximately 105, flow transitioned from fast fluidization to a dense suspension upflow. In the axial direction of the riser, solid holdup had an exponential profile, increasing with increasing solid circulation rate and Jot decreasing superficial gas velocity. From the riser's center to its wall, the solid holdup increased markedly, exhibiting a steep parabolic profile. Increasing the solid circulation rate increased the radial non-uniformity of the solid concentration, while increasing the superficial gas velocity had the opposite effect, In our dense circulating fluidized bed riser, Geldart group B particles had similar slip characteristics to Geldart group A particles, 展开更多
关键词 circulating fluidized bed riser Dense gas-solid flow High density High flux Hydrodynamics Geldart group B particle
原文传递
3D full-loop simulation and experimental verification of gas-solid flow hydrodynamics in a dense circulating fluidized bed 被引量:2
13
作者 Xueyao Wang Xuezhi Wu +2 位作者 Fulin Lei Jing Lei Yunhan Xiao 《Particuology》 SCIE EI CAS CSCD 2014年第5期218-226,共9页
Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical... Because of their advantages of high efficiency and low cost, numerical research methods for large-scale circulating fluidized bed (CFB) apparatus are gaining ever more importance. This article presents a numer- ical study of gas-solid flow dynamics using the Eulerian granular multiphase model with a drag coefficient correction based on the energy-minimization multi-scale (EMMS) model. A three-dimensional, full-loop, time-dependent simulation of the hydrodynamics of a dense CFB apparatus is performed. The process parameters (e.g., operating and initial conditions) are provided in accordance with the real experiment to enhance the accuracy of the simulation. The axial profiles of the averaged solid volume fractions and the solids flux at the outlet of the cyclone are in reasonable agreement with experimental data, thereby verifying the applicability of the mathematical and physical models. As a result, the streamline in the riser and standpipe as well as the solids distribution contours at the cross sections is analyzed. Computational fluid dynamics (CFD) serves as a basis for CFB modeling to help resolve certain issues long in dispute but difficult to address experimentally. The results of this study provide the basis of a general approach to describing dynamic simulations of gas-solid flows. 展开更多
关键词 gas-solid flow circulating fluidized bed EMMS method 3D full-loop simulation
原文传递
Experimental study of the solid circulation rate in a pressurized circulating fluidized bed 被引量:1
14
作者 Jinding Hu Daoyin Liu +2 位作者 Heng Li Cai Liang Xiaoping Chen 《Particuology》 SCIE EI CAS CSCD 2021年第3期207-214,共8页
The solid circulation rate is essential for design of pressurized circulating fluidized beds(PCFBs).With increasing pressure from atmospheric pressure to a few bars,the gas density linearly increases with the pressure... The solid circulation rate is essential for design of pressurized circulating fluidized beds(PCFBs).With increasing pressure from atmospheric pressure to a few bars,the gas density linearly increases with the pressure,which affects the gas-solid flow characteristics.In this work,experiments were performed at room temperature in a cold PCFB apparatus with a riser of 3.3 m in height and 0.05 m in diameter.The solid circulation rate was studied from 20 to 80 kg/(m^(2)·s)under various conditions with increasing pressure from 0.1 to 0.6 MPa and fluidizing gas velocity from around 1.5 to 8.0 m/s for different Geldart B group particles.Most of the conditions were in the flow regimes of core-annulus flow(CAF)only and CAF with a turbulent fluidized bed at the bottom.The trend of the apparent slip factor with the dimensionless slip velocity was similar at different pressures and for different average particle sizes,and it converged to an exponential function.An empirical equation was obtained by fitting the solid circulation rate with the operating parameters(particle transport velocity,particle volume fraction,Archimedes number,and Froude number),which is helpful for design and operation of PCFBs. 展开更多
关键词 Pressurized circulating fluidized bed Solid circulation rate Particle volume fraction gas-solid slip velocity
原文传递
Onset velocity of circulating fluidization and particle residence time distribution:A CFD-DEM study 被引量:9
15
作者 Qiqi Han Ning Yang +1 位作者 Jiahua Zhu Mingyan Liu 《Particuology》 SCIE EI CAS CSCD 2015年第4期187-195,共9页
Until now, the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superfcial liquid ve... Until now, the onset velocity of circulating fluidization in liquid-solid fluidized beds has been defined by the turning point of the time required to empty a bed of particles as a function of the superfcial liquid velocity, and is reported to be only dependent on the liquid and particle properties. This study presents a new approach to calculate the onset velocity using CFD-DEM simulation of the particle residence time distribution (RTD). The onset velocity is identified from the intersection of the fitted lines of the particle mean residence time as a function of superficial liquid velocity. Our results are in reasonable agreement with experimental data. The simulation indicates that the onset velocity is infuenced by the density and size of particles and weakly affected by riser height and diameter, A power-law function is proposed to correlate the mean particle residence time with the superficial liquid velocity. The collisional parameters have a minor effect on the mean residence time of particles and the onset velocity, but influence the particle RTD, showing some humps and trailing. The particle RTD is found to be related to the particle trajectories, which may indicate the complex flow structure and underlying mechanisms of the particle RTD. 展开更多
关键词 Discrete element method (DEM) Computational fluid dynamics (CFD) Liquid-solid circulating fluidized bed Particle residence time distribution Onset velocity
原文传递
Borescopic particle image velocimetry in bubbling gas-solid fluidized beds 被引量:2
16
作者 M. Banaei R. Dellaert +2 位作者 N.G. Deen J.A.M. Kuipers M. van Sint Annaland 《Particuology》 SCIE EI CAS CSCD 2019年第2期66-75,共10页
In this work, the borescopic particle image velocimetry (BPIV) technique was applied to a bubbling gas-solid fluidized bed, and the results were compared with published positron emission particle tracking (PEPT) measu... In this work, the borescopic particle image velocimetry (BPIV) technique was applied to a bubbling gas-solid fluidized bed, and the results were compared with published positron emission particle tracking (PEPT) measurement data. Before performing the experiments, the sensitivity of the BPIV results to the illumination power, light reflectivity of the particles, and location of the borescope was also investigated. The BPIV and PEPT results were in fair agreement;however, some discrepancies were observed.The difference between the two sets of results were mainly caused by the intrusiveness of BPIV, the fact that the local solids volume fraction was not accounted for in the BPIV analysis, and the intrinsic differences of these two methods. Therefore, measurement of the local solids volume fraction with the borescope is highly recommended for further development of the BPIV method, which will also enable measureme nt of the local solids mass fluxes in side dense gas-solid fluidized beds. 展开更多
关键词 Borescopic particle image velocIMETRY gas-solid BUBBLING fluidized bed Solid velocity profile Experimental investigation HYDRODYNAMICS
原文传递
差速流化床及差速循环流化床锅炉
17
作者 别如山 《工业锅炉》 2024年第3期1-9,共9页
介绍差速流化床的历史背景、工作原理以及低速床内埋管防磨效果和与差速循环流化床相匹配的带加速段卧式旋风分离器结构及其应用。综述了江联重工集团股份有限公司35~220 t/h差速流化床的研发成果,以及哈尔滨工业大学在10~130 t/h差速... 介绍差速流化床的历史背景、工作原理以及低速床内埋管防磨效果和与差速循环流化床相匹配的带加速段卧式旋风分离器结构及其应用。综述了江联重工集团股份有限公司35~220 t/h差速流化床的研发成果,以及哈尔滨工业大学在10~130 t/h差速循环流化床研发方面取得的业绩。比较了常规循环流化床与差速循环流化床的优缺点,在燃烧低热值燃料时差速循环流化床比常规循环流化床具有显著的优越性。 展开更多
关键词 差速流化床 差速循环流化床 循环流化床 磨损
下载PDF
Evaluation of the effect of wall boundary conditions on numerical simulations of circulating fluidized beds 被引量:3
18
作者 Lei Kong Chao Zhang Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2014年第2期114-123,共10页
A computational fluid dynamics (CFD) modeling of the gas-solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian-Eularian method with the kinetic theory of granular flow is us... A computational fluid dynamics (CFD) modeling of the gas-solids two-phase flow in a circulating fluidized bed (CFB) riser is carried out. The Eularian-Eularian method with the kinetic theory of granular flow is used to solve the gas-solids two-phase flow in the CFB riser. The wall boundary condition of the riser is defined based on the Johnson and Jackson wall boundary theory (Johnson & Jackson, 1987) with specularity coefficient and particle-wall restitution coefficient.The numerical results show that these two coefficients in the wall boundary condition play a major role in the predicted solids lateral velocity, which affects the solid particle distribution in the CFB riser. And the effect of each of the two coefficients on the solids distribution also depends on the other one. The generality of the CFD model is further validated under different operatin~ conditions of the CFB riser. 展开更多
关键词 CFD circulating fluidized bed gas-solids two-phase flowWall boundary conditionSpecularity coefficientParticle-wall restitution coefficient
原文传递
Scale-up effect analysis and modeling of liquid-solid circulating fluidized bed risers using multigene genetic programming
19
作者 Shaikh A.Razzak Saddam A.AI-Hammadi +3 位作者 Syed M.Rahman Mohammad R.Quddus Mohammad M.Hossain Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2020年第5期57-66,共10页
Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investi... Understanding scale-up effects on the hydrodynamics of a liquid-solid circulating fluidized bed(LSCFB)unit requires both experimental and theoretical analysis.We implement multigene genetic programming(MGGP)to investigate the solid holdup and distribution in three LSCFB systems with different heights.In addition to data obtained here,we also use a portion of data sets of LSCFB systems developed by Zheng(1999)and Liang et al.(1996).Model predictions are in good agreement with the experimental data in both radial and axial directions and at different normalized superficial liquid and solid velocities.The radial profiles of the solid holdup are approximately identical at a fixed average cross-sectional solid holdup for the three LSCFB systems studied.Statistical performance indicators including the mean absolute percentage error(6.19%)and correlation coefficient(0.985)are within an acceptable range.The results suggest that a MGGP modeling approach is suitable for predicting the solid holdup and distribution of a scaled-up LSCFB system. 展开更多
关键词 fluidizATION Liquid-solid circulating fluidized bed Multigene genetic programming Scale-up effect Normalized superficial liquid velocity Solid holdup
原文传递
Hydrodynamics in a new liquid–solid circulating conventional fluidized bed
20
作者 Jingya Fu Xinyu Pan +3 位作者 Zeneng Sun Ruoting Liu Ying Zheng Jesse Zhu 《Particuology》 SCIE EI CAS CSCD 2022年第11期20-29,共10页
A new type of liquid–solid fluidized bed,named circulating conventional fluidized bed(CCFB)which operates below particle terminal velocity was proposed and experimentally studied.The hydrodynamic behavior was systema... A new type of liquid–solid fluidized bed,named circulating conventional fluidized bed(CCFB)which operates below particle terminal velocity was proposed and experimentally studied.The hydrodynamic behavior was systematically studied in a liquid–solid CCFB of 0.032 m I.D.and 4.5 m in height with five different types of particles.Liquid–solid fluidization with external particle circulation was experimentally realized below the particle terminal velocity.The axial distribution of local solids holdup was obtained and found to be fairly uniform in a wide range of liquid velocities and solids circulation rates.The average solids holdup is found to be significantly increased compared with conventional fluidization at similar conditions.The effect of particle properties and operating conditions on bed behavior was investigated as well.Results show that particles with higher terminal velocity have higher average solids holdup. 展开更多
关键词 circulating conventional fluidized bed(CCFB) Solids holdup Solids circulation rate Superficial liquid velocity Particle properties Operating conditions
原文传递
上一页 1 2 6 下一页 到第
使用帮助 返回顶部