Number concentration and size distribution from gasoline ears are investigated at transient modes on the chassis dynamometers, which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC ...Number concentration and size distribution from gasoline ears are investigated at transient modes on the chassis dynamometers, which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC cycles. Results indicate that, during cold start, particle number emission is higher than that under hot start. It is found that the number of particles increases with the vehicle speeds. Furthermore, particles with diameter smaller than 200 nm constitute the predominant part of total emission in the entire cycle. In addition, the tentative information about composition of emitted particles is also discussed.展开更多
The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic conver...The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic converter, etc. The purification effect of CO, HC and NOx emission of the gasoline spark ignite (S.I.) engine is studied. The entire vehicle driving cycle tests based on the national emission standard and a series of the gasoline engine-testing bench tests including full load characteristic experiment, load characteristic experiment and idle speed experiment are done. The results show that the system has a very good emission control effect to CO, HC and NOx of gasoline engine. The construction of the system is very simple and can be mounted on the exhaust pipe conveniently without any alteration of the vehicle-use gasoline engine.展开更多
Considerable efforts have been devoted to characterising the chemical components of vehicle exhaust.However,these components may not accurately reflect the contribution of vehicle exhaust to atmospheric reactivity bec...Considerable efforts have been devoted to characterising the chemical components of vehicle exhaust.However,these components may not accurately reflect the contribution of vehicle exhaust to atmospheric reactivity because of the presence of species not accounted for(“missing species”)given the limitations of analytical instruments.In this study,we improved the laser photolysis–laser-induced fluorescence(LP-LIF)technique and applied it to directly measure the total OH reactivity(TOR)in exhaust gas from light-duty gasoline vehicles in China.The TOR for China Ⅰ to Ⅵ-a vehicles was 15.6,16.3,8.4,2.6,1.5,and 1.6×10^(4) sec^(-1),respectively,reflecting a notable drop as emission standards were upgraded.The TOR was comparable between cold and warm starts.The missing OH reactivity(MOR)values for China Ⅰ to Ⅳ vehicles were close to zero with a cold start but were much higher with a warm start.The variations in oxygenated volatile organic compounds(OVOCs)under different emission standards and for the two start conditions were similar to those of the MOR,indicating that OVOCs and the missing species may have similar production processes.Online measurement revealed that the duration of the stable driving stage was the primary factor leading to the production of OVOCs and missing species.Our findings underscore the importance of direct measurement of TOR from vehicle exhaust and highlight the necessity of adding OVOCs and other organic reactive gases in future upgrades of emission standards,such that the vehicular contribution to atmospheric reactivity can be more effectively controlled.展开更多
In this study,ammonia emissions characteristics of typical light-duty gasoline vehicles were obtained through laboratory vehicle bench test and combined with New European Driving Cycle(NEDC)condition and Worldwide Har...In this study,ammonia emissions characteristics of typical light-duty gasoline vehicles were obtained through laboratory vehicle bench test and combined with New European Driving Cycle(NEDC)condition and Worldwide Harmonized Light Vehicles Test Cycle(WLTC)condition.The influence of ambient temperature on ammonia emissions is mainly concentrated in the cold start stage.The influence of ambient temperature on ammonia emission is shown that the ammonia emissions of light-duty gasoline vehicles under ambient temperature conditions(14 and 23℃)are lower than those under low ambient temperature conditions(-7℃)and high ambient temperature conditions(35 and 40℃).The influence of TWC on ammonia emission is shown that ammonia is a by-product of the catalytic reduction reaction of conventional gas pollutants in the exhaust gas in the TWC.Under NEDC operating conditions and WLTC operating conditions,ammonia emissions after the catalyst are 45 times and 72 times that before the catalyst,respectively.In terms of ammonia emissions control strategy research,Pd/Rh combination can reduce NH3 formation more effectively than catalyst with a single Pd formula.Precise control of the engine’s air-fuel ratio and combination with the optimized matched precious metal ratio TWC can effectively reduce ammonia emissions.展开更多
While Unleaded gasoline has the advantage of eliminating lead from automobile exhaust, its potential to reduce the exhaust gas and particles, merits further examination. In the present studies,the concentrations of hy...While Unleaded gasoline has the advantage of eliminating lead from automobile exhaust, its potential to reduce the exhaust gas and particles, merits further examination. In the present studies,the concentrations of hydrocarbons (HC) and earbon monoxides (CO) in emissions were analyzed on Santana engine Dynamometer under a standard test cycle, and total exhaust particles were collected from engines using leaded and unleaded gasoline. It was found that unleaded gasoline reduced the emissions of CO and HC, and decreased the quantity of vehicle exhaust particulate matters by 60%.With the unlead gasoline, only 23 kinds of organic substances, adsorbed in the particles, were identified by gas chromatography/mass spectrometer (GC/MS) while 32 components were detected using the leaded gasoline. The results of in vitro Salmonella/ microsomal test and micronucleus induction assay in CHL cells indicated that both types of gasoline increased the number of histidine-independent colonies and the frequencies of micronucleus induction; no significant differellce was found in their mutagenicity.展开更多
Black carbon(BC)is considered the second largest anthropogenic climate forcer,but the radiative effects of BC are highly correlated with its combustion sources.On-road vehicles are an important source of anthropogenic...Black carbon(BC)is considered the second largest anthropogenic climate forcer,but the radiative effects of BC are highly correlated with its combustion sources.On-road vehicles are an important source of anthropogenic BC.However,there are major uncertainties in the estimates of the BC emissions from on-road light-duty passenger vehicles(LDPVs),and results obtained with the portable emissions measurement system(PEMS)method are particularly lacking.We developed a PEMS platform and evaluated the on-road BC emissions from ten in-use LDPVs.We demonstrated that the BC emission factors(EFs)of gasoline direction injection(GDI)engine vehicles range from 1.10 to 1.56 mg.km^(-1),which are higher than the EFs of port fuel injection(PFI)engine vehicles(0.10–0.17 mg.km^(-1))by a factor of 11.The BC emissions during the cold-start phase contributed 2%–33%to the total emissions.A strong correlation(R^(2)=0.70)was observed between the relative BC EFs and average vehicle speed,indicating that traffic congestion alleviation could effectively mitigate BC emissions.Moreover,BC and particle number(PN)emissions were linearly correlated(R^(2)=0.90),and compared to PFI engine vehicles,the instantaneous PN-to-BC emission rates of GDI engine vehicles were less sensitive to vehicle specific power-to-velocity(VSPV)increase in all speed ranges.展开更多
An increasing divergence regarding fuel consumption(and/or CO_(2)emissions) between realworld and type-approval values for light-duty gasoline vehicles(LDGVs) has posed severe challenges to mitigating greenhouse gases...An increasing divergence regarding fuel consumption(and/or CO_(2)emissions) between realworld and type-approval values for light-duty gasoline vehicles(LDGVs) has posed severe challenges to mitigating greenhouse gases(GHGs) and achieving carbon emissions peak and neutrality. To address this divergence issue, laboratory test cycles with more real-featured and transient traffic patterns have been developed recently, for example, the China Lightduty Vehicle Test Cycle for Passenger cars(CLTC-P). We collected fuel consumption and CO_(2)emissions data of a LDGV under various conditions based on laboratory chassis dynamometer and on-road tests. Laboratory results showed that both standard test cycles and setting methods of road load affected fuel consumption slightly, with variations of less than 4%. Compared to the type-approval value, laboratory and on-road fuel consumption of the tested LDGV over the CLTC-P increased by 9% and 34% under the reference condition(i.e., air conditioning off, automatic stop and start(STT) on and two passengers). On-road measurement results indicated that fuel consumption under the low-speed phase of the CLTC-P increased by 12% due to the STT off, although only a 4% increase on average over the entire cycle. More fuel consumption increases(52%) were attributed to air conditioning usage and full passenger capacity. Strong correlations(R2> 0.9) between relative fuel consumption and average speed were also identified. Under traffic congestion(average speed below 25 km/hr), fuel consumption was highly sensitive to changes in vehicle speed. Thus,we suggest that real-world driving conditions cannot be ignored when evaluating the fuel economy and GHGs reduction of LDGVs.展开更多
In this study, the influences of accumulated mileage (deterioration) and technological changes (emission standards) on emission factors (EFs) of regulated pollutants (CO, HC, and NOx) from gasoline passenger v...In this study, the influences of accumulated mileage (deterioration) and technological changes (emission standards) on emission factors (EFs) of regulated pollutants (CO, HC, and NOx) from gasoline passenger vehicles were investigated based on Inspection and Maintenance (I/M) data using the chassis dynamometer method. The accumulated mileage of passenger vehicles was significantly linearly correlated with vehicle age. For most cases, the average EFs of CO, HC and NOx were significantly linearly correlated with accumulated mileage, indicating that emission deterioration had a significant impact on pollutant EFs. Implemented emission standards markedly influenced the EFs of regulated pollutants, and EFs markedly decreased with progressing emission standards. The present study also compared EFs of regulated pollutants between this study and the International vehicle emission (IVE) model, and marked differences in EFs were seen with variations in emission standards, vehicle types and accumulated mileage; NOx EFs in this study were higher than in the IVE model. The results provide new insight into estimating regulated pollutant emissions using the IVE model.展开更多
文摘Number concentration and size distribution from gasoline ears are investigated at transient modes on the chassis dynamometers, which are measured using electrical low pressure impactor (ELPI) for the ECE15 and EUDC cycles. Results indicate that, during cold start, particle number emission is higher than that under hot start. It is found that the number of particles increases with the vehicle speeds. Furthermore, particles with diameter smaller than 200 nm constitute the predominant part of total emission in the entire cycle. In addition, the tentative information about composition of emitted particles is also discussed.
基金This project is supported by Provincial Natural Science Foundation of Guangdong, China and Provincial Environmental Protection Science Foundation of Guangdong, China(No.320-D38000).
文摘The working principle of a kind of compositive emission control system is inquired into, which includes exhaust heater, secondary air supplement, exhaust gas recirculation (EGR), thermal reactor and catalytic converter, etc. The purification effect of CO, HC and NOx emission of the gasoline spark ignite (S.I.) engine is studied. The entire vehicle driving cycle tests based on the national emission standard and a series of the gasoline engine-testing bench tests including full load characteristic experiment, load characteristic experiment and idle speed experiment are done. The results show that the system has a very good emission control effect to CO, HC and NOx of gasoline engine. The construction of the system is very simple and can be mounted on the exhaust pipe conveniently without any alteration of the vehicle-use gasoline engine.
基金supported by the National Natural Science Foundation of China(Nos.91644221 and 41627809)the National Key Research and Development Program of China(Nos.2016YFC0202201 and 2018YFC0213904)the Key-Area Research and Development Program of Guangdong Province(No.2019B110206001).
文摘Considerable efforts have been devoted to characterising the chemical components of vehicle exhaust.However,these components may not accurately reflect the contribution of vehicle exhaust to atmospheric reactivity because of the presence of species not accounted for(“missing species”)given the limitations of analytical instruments.In this study,we improved the laser photolysis–laser-induced fluorescence(LP-LIF)technique and applied it to directly measure the total OH reactivity(TOR)in exhaust gas from light-duty gasoline vehicles in China.The TOR for China Ⅰ to Ⅵ-a vehicles was 15.6,16.3,8.4,2.6,1.5,and 1.6×10^(4) sec^(-1),respectively,reflecting a notable drop as emission standards were upgraded.The TOR was comparable between cold and warm starts.The missing OH reactivity(MOR)values for China Ⅰ to Ⅳ vehicles were close to zero with a cold start but were much higher with a warm start.The variations in oxygenated volatile organic compounds(OVOCs)under different emission standards and for the two start conditions were similar to those of the MOR,indicating that OVOCs and the missing species may have similar production processes.Online measurement revealed that the duration of the stable driving stage was the primary factor leading to the production of OVOCs and missing species.Our findings underscore the importance of direct measurement of TOR from vehicle exhaust and highlight the necessity of adding OVOCs and other organic reactive gases in future upgrades of emission standards,such that the vehicular contribution to atmospheric reactivity can be more effectively controlled.
基金supported by the National Natural Science Foundation of China(Nos.51508304 and 41275133)。
文摘In this study,ammonia emissions characteristics of typical light-duty gasoline vehicles were obtained through laboratory vehicle bench test and combined with New European Driving Cycle(NEDC)condition and Worldwide Harmonized Light Vehicles Test Cycle(WLTC)condition.The influence of ambient temperature on ammonia emissions is mainly concentrated in the cold start stage.The influence of ambient temperature on ammonia emission is shown that the ammonia emissions of light-duty gasoline vehicles under ambient temperature conditions(14 and 23℃)are lower than those under low ambient temperature conditions(-7℃)and high ambient temperature conditions(35 and 40℃).The influence of TWC on ammonia emission is shown that ammonia is a by-product of the catalytic reduction reaction of conventional gas pollutants in the exhaust gas in the TWC.Under NEDC operating conditions and WLTC operating conditions,ammonia emissions after the catalyst are 45 times and 72 times that before the catalyst,respectively.In terms of ammonia emissions control strategy research,Pd/Rh combination can reduce NH3 formation more effectively than catalyst with a single Pd formula.Precise control of the engine’s air-fuel ratio and combination with the optimized matched precious metal ratio TWC can effectively reduce ammonia emissions.
文摘While Unleaded gasoline has the advantage of eliminating lead from automobile exhaust, its potential to reduce the exhaust gas and particles, merits further examination. In the present studies,the concentrations of hydrocarbons (HC) and earbon monoxides (CO) in emissions were analyzed on Santana engine Dynamometer under a standard test cycle, and total exhaust particles were collected from engines using leaded and unleaded gasoline. It was found that unleaded gasoline reduced the emissions of CO and HC, and decreased the quantity of vehicle exhaust particulate matters by 60%.With the unlead gasoline, only 23 kinds of organic substances, adsorbed in the particles, were identified by gas chromatography/mass spectrometer (GC/MS) while 32 components were detected using the leaded gasoline. The results of in vitro Salmonella/ microsomal test and micronucleus induction assay in CHL cells indicated that both types of gasoline increased the number of histidine-independent colonies and the frequencies of micronucleus induction; no significant differellce was found in their mutagenicity.
基金supported by the National Natural Science Foundation of China(51708327 and 51978404)。
文摘Black carbon(BC)is considered the second largest anthropogenic climate forcer,but the radiative effects of BC are highly correlated with its combustion sources.On-road vehicles are an important source of anthropogenic BC.However,there are major uncertainties in the estimates of the BC emissions from on-road light-duty passenger vehicles(LDPVs),and results obtained with the portable emissions measurement system(PEMS)method are particularly lacking.We developed a PEMS platform and evaluated the on-road BC emissions from ten in-use LDPVs.We demonstrated that the BC emission factors(EFs)of gasoline direction injection(GDI)engine vehicles range from 1.10 to 1.56 mg.km^(-1),which are higher than the EFs of port fuel injection(PFI)engine vehicles(0.10–0.17 mg.km^(-1))by a factor of 11.The BC emissions during the cold-start phase contributed 2%–33%to the total emissions.A strong correlation(R^(2)=0.70)was observed between the relative BC EFs and average vehicle speed,indicating that traffic congestion alleviation could effectively mitigate BC emissions.Moreover,BC and particle number(PN)emissions were linearly correlated(R^(2)=0.90),and compared to PFI engine vehicles,the instantaneous PN-to-BC emission rates of GDI engine vehicles were less sensitive to vehicle specific power-to-velocity(VSPV)increase in all speed ranges.
基金sponsored by the National Natural Science Foundation of China (Nos. 52170111 and 41977180)the first China First Automobile Works (FAW)-Volkswagen China Environmental Protection Foundation automobile environmental protection innovation leading plan。
文摘An increasing divergence regarding fuel consumption(and/or CO_(2)emissions) between realworld and type-approval values for light-duty gasoline vehicles(LDGVs) has posed severe challenges to mitigating greenhouse gases(GHGs) and achieving carbon emissions peak and neutrality. To address this divergence issue, laboratory test cycles with more real-featured and transient traffic patterns have been developed recently, for example, the China Lightduty Vehicle Test Cycle for Passenger cars(CLTC-P). We collected fuel consumption and CO_(2)emissions data of a LDGV under various conditions based on laboratory chassis dynamometer and on-road tests. Laboratory results showed that both standard test cycles and setting methods of road load affected fuel consumption slightly, with variations of less than 4%. Compared to the type-approval value, laboratory and on-road fuel consumption of the tested LDGV over the CLTC-P increased by 9% and 34% under the reference condition(i.e., air conditioning off, automatic stop and start(STT) on and two passengers). On-road measurement results indicated that fuel consumption under the low-speed phase of the CLTC-P increased by 12% due to the STT off, although only a 4% increase on average over the entire cycle. More fuel consumption increases(52%) were attributed to air conditioning usage and full passenger capacity. Strong correlations(R2> 0.9) between relative fuel consumption and average speed were also identified. Under traffic congestion(average speed below 25 km/hr), fuel consumption was highly sensitive to changes in vehicle speed. Thus,we suggest that real-world driving conditions cannot be ignored when evaluating the fuel economy and GHGs reduction of LDGVs.
基金supported by the National Natural Science Foundation of China (No. 21577125)the Social Development Special Fund from Science and Technology Bureau of Hangzhou, China (No. 20110533B09)
文摘In this study, the influences of accumulated mileage (deterioration) and technological changes (emission standards) on emission factors (EFs) of regulated pollutants (CO, HC, and NOx) from gasoline passenger vehicles were investigated based on Inspection and Maintenance (I/M) data using the chassis dynamometer method. The accumulated mileage of passenger vehicles was significantly linearly correlated with vehicle age. For most cases, the average EFs of CO, HC and NOx were significantly linearly correlated with accumulated mileage, indicating that emission deterioration had a significant impact on pollutant EFs. Implemented emission standards markedly influenced the EFs of regulated pollutants, and EFs markedly decreased with progressing emission standards. The present study also compared EFs of regulated pollutants between this study and the International vehicle emission (IVE) model, and marked differences in EFs were seen with variations in emission standards, vehicle types and accumulated mileage; NOx EFs in this study were higher than in the IVE model. The results provide new insight into estimating regulated pollutant emissions using the IVE model.