Background: Gaucher's disease (GD) is an autosomal recessive disorder caused by a deficiency of acid β-glucosidase (glucocerebrosidase [GBA]) that results in the accumulation of glucocerebroside within macropha...Background: Gaucher's disease (GD) is an autosomal recessive disorder caused by a deficiency of acid β-glucosidase (glucocerebrosidase [GBA]) that results in the accumulation of glucocerebroside within macrophages. Many mutations have been reported to be associated with this disorder. This study aimed to discover more mutations and provide data for the genetic pattern of the gene, which will help the development of quick and accurate genetic diagnostic tools for this disease. Methods: Genomic DNA was obtained from peripheral blood leukocytes of the patient and Sanger sequencing is used to sequence GBA gene. Sequence alignments of mammalian β-GBA (GCase) and three-dimensional protein structure prediction of the mutation were made. A construct of this mutant and its compound heterozygous counterpart were used to measure GCase in vitro. Results: GCase is relatively conserved at p.T219A. This novel mutation differs from its wild-type in structure. Moreover, it also causes a reduction in GCase enzyme activity. Conclusion: This novel mutation (c.655A〉G, p.T219A) is a pathogenic missense mutation, which contributes to GD.展开更多
基金This study was supported by grants from Natural Science Foundation of China (No. 81371269) and Shanghai Research Program (No. 14140902600, No. 2013ZYJB0015, and No. 14DJ 1400103).
文摘Background: Gaucher's disease (GD) is an autosomal recessive disorder caused by a deficiency of acid β-glucosidase (glucocerebrosidase [GBA]) that results in the accumulation of glucocerebroside within macrophages. Many mutations have been reported to be associated with this disorder. This study aimed to discover more mutations and provide data for the genetic pattern of the gene, which will help the development of quick and accurate genetic diagnostic tools for this disease. Methods: Genomic DNA was obtained from peripheral blood leukocytes of the patient and Sanger sequencing is used to sequence GBA gene. Sequence alignments of mammalian β-GBA (GCase) and three-dimensional protein structure prediction of the mutation were made. A construct of this mutant and its compound heterozygous counterpart were used to measure GCase in vitro. Results: GCase is relatively conserved at p.T219A. This novel mutation differs from its wild-type in structure. Moreover, it also causes a reduction in GCase enzyme activity. Conclusion: This novel mutation (c.655A〉G, p.T219A) is a pathogenic missense mutation, which contributes to GD.