The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In th...The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.展开更多
In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory ...In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.展开更多
Recently,a new method has been proposed to compute parton distributions using boosted correlators fixed in the Coulomb gauge(CG)within the framework of large-momentum effective theory.This approach,which does not invo...Recently,a new method has been proposed to compute parton distributions using boosted correlators fixed in the Coulomb gauge(CG)within the framework of large-momentum effective theory.This approach,which does not involve Wilson lines,could greatly improve the efficiency and precision of lattice quantum chromodynamics calculations.However,concerns remain regarding whether systematic uncertainties from Gribov copies,which correspond to ambiguities in lattice gauge-fixing,are adequately controlled.This work assesses the effects of Gribov copies on Coulomb-gauge-fixed quark correlators.We utilize different strategies for Coulomb-gauge fixing,selecting two different groups of Gribov copies based on lattice gauge configurations.We examine the differences in the resulting spatial quark correlators in both vacuum and pion states.Our findings indicate that the statistical errors of the matrix elements from both Gribov copies,regardless of the correlation range,decrease proportionally to the square root of the number of gauge configurations.The difference between the strategies does not show statistical significance compared to the gauge noise,demonstrating that the effect of the Gribov copies can be neglected in practical lattice calculations of quark parton distributions.展开更多
Gauge field theory is a fundamental concept in modern physics,attracting many theoretical and experimental efforts towards its simulation.In this paper we propose that a simple model,in which fermions coupled to a dyn...Gauge field theory is a fundamental concept in modern physics,attracting many theoretical and experimental efforts towards its simulation.In this paper we propose that a simple model,in which fermions coupled to a dynamical lattice gauge field,can be engineered via the Floquet approach.The model possesses both an independent Maxwell term and local Z_(2) gauge symmetry.Our proposal relies on a species-dependent optical lattice,and can be achieved in one,two or three dimensions.By a unitary transformation,this model can be mapped into a non-interacting composite fermion system with fluctuating background charge.With the help of this composite fermion picture,two characteristic observations are predicted.One is radio-frequency spectroscopy,which exhibits no dispersion in all parameter regimes.The second is dynamical localization,which depends on the structure of the initial states.展开更多
In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as an...In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia.展开更多
We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms...We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field.展开更多
Objectives: As therapeutic modalities for rheumatoid arthritis (RA) advance, immediate and quantitative determination of RA disease status is becoming increasingly important. The purpose of this study was to validate ...Objectives: As therapeutic modalities for rheumatoid arthritis (RA) advance, immediate and quantitative determination of RA disease status is becoming increasingly important. The purpose of this study was to validate the usefulness of a ring gauge as a simple semiquantitative method for assessing hand swelling in patients with RA. Methods: We enrolled patients diagnosed with RA either initiated or switched to a biological therapeutic agent. The circumference of the interphalangeal (IP) joint and the proximal interphalangeal (PIP) joint was measured using a ring gauge. Assessments of the joint echocardiography, incorporating both Gray Scale (GS) and Power Doppler (PD) imaging, were conducted. These evaluations were performed both before the initiation of biological agent treatment and 28 days after the initial dose. Results: Following the treatment intervention, a significant reduction was observed in the circumference of the joint from the thumb to the little finger (p Conclusions: Our study demonstrated the effectiveness of using a ring gauge as a simple assessment tool for RA, revealing that a change in the ring gauge number by 2 or more corresponded to either improvement or deterioration in synovial thickening detected via joint echocardiography.展开更多
Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/appro...Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.展开更多
Using the Landau and symmetric gauges for the vector potential of a constant magnetic field and the quantum problem of a charged particle moving on a flat surface, we show the classical electromagnetic gauge transform...Using the Landau and symmetric gauges for the vector potential of a constant magnetic field and the quantum problem of a charged particle moving on a flat surface, we show the classical electromagnetic gauge transformation does not correspond to a one-dimensional unitary group transformation U(1) of the wave function for the quantum case. In addition, with the re-examination of the relation between the magnetic field B and its vector potential A, we found that, in order to have a consistent formulation of the dynamics of the charged particle with both expressions, we must have that B=∇×A if and only if B≠0.展开更多
A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge fie...A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.展开更多
For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. B...For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interaction will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.展开更多
In this paper, we have proposed the theory of gravity gauge, and the gravity theory has been introduced into quantum field theory. We have further given the tensor equation of gravity field in the flat space, and foun...In this paper, we have proposed the theory of gravity gauge, and the gravity theory has been introduced into quantum field theory. We have further given the tensor equation of gravity field in the flat space, and found the gravity field equation is the Lorentz covariant and gauge invariant. The gravity theory can be quantized and can be unified with the electroweak and strong interaction at a new gauge group .展开更多
A new static de Sitter solution with torsion in the model of de Sitter gauge theory of gravity is obtained. The torsion only contains Q(3)-symmetric tensor part according to irreducible decomposition. Some propertie...A new static de Sitter solution with torsion in the model of de Sitter gauge theory of gravity is obtained. The torsion only contains Q(3)-symmetric tensor part according to irreducible decomposition. Some properties of the new solution are discussed.展开更多
A cosmological model based on gauge theory of gravity is proposed in thispaper. Combining cosmological principle and field equation of gravitational gauge field, dynamicalequations of the scale factor R(t) of our univ...A cosmological model based on gauge theory of gravity is proposed in thispaper. Combining cosmological principle and field equation of gravitational gauge field, dynamicalequations of the scale factor R(t) of our universe can be obtained. This set of equations has threedifferent solutions. A prediction of the present model is that, if the energy density of theuniverse is not zero and the universe is expanding, the universe must be space-fiat, the totalenergy density must be the critical density ρ_c of the universe. For space-Bat case, this modelgives the same solution as that of the Friedmann model. In other words, though they have differentdynamics of gravitational interactions, general relativity and gauge theory of gravity give the samecosmological model.展开更多
In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale G...In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.展开更多
The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometri...The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.展开更多
Inertial and gravitational mass or energy momentum need not be the same for virtual quantum states. Separating their roles naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner four-dime...Inertial and gravitational mass or energy momentum need not be the same for virtual quantum states. Separating their roles naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner four-dimensional space. The gauge-fixed action and the path integral measure occurring in the generating functional for the quantum Green functions of the theory are shown to obey a BRST-type symmetry. The related Zinn-Justin-type equation restricting the corresponding quantum effective action is established. This equation limits the infinite parts of the quantum effective action to have the same form as the gauge-fixed Lagrangian of the theory proving its spacetime renormalizability. The inner space integrals occurring in the quantum effective action which are divergent due to the gauge group’s infinite volume are shown to be regularizable in a way consistent with the symmetries of the theory demonstrating as a byproduct that viable quantum gauge field theories are not limited to finite-dimensional compact gauge groups as is commonly assumed.展开更多
We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and t...We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative Dμ. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials A^α μ (x) have spherical symmetry, depending only on the radial coordinate τ is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.展开更多
It is well known that the Poincaré gauge theories of gravity do not have the structure of a standard gauge theory. Nevertheless, we show that a general form of action for the gravitational gauge fields in the gau...It is well known that the Poincaré gauge theories of gravity do not have the structure of a standard gauge theory. Nevertheless, we show that a general form of action for the gravitational gauge fields in the gauge theory does possess local Poincaré invariance.展开更多
文摘The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.
文摘In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.
基金supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics through Contract Nos. DE-AC02-06CH11357 and DE-SC0012704the frameworks of Scientific Discovery through Advanced Computing (SciDAC) award Fundamental Nuclear Physics at the Exascale and Beyond and the Quark-Gluon Tomography (QGT) Topical Collaboration, under contract No. DE-SC0023646partially supported by the 2023 Physical Sciences and Engineering (PSE) Early Investigator Named Award program at Argonne National Laboratory.
文摘Recently,a new method has been proposed to compute parton distributions using boosted correlators fixed in the Coulomb gauge(CG)within the framework of large-momentum effective theory.This approach,which does not involve Wilson lines,could greatly improve the efficiency and precision of lattice quantum chromodynamics calculations.However,concerns remain regarding whether systematic uncertainties from Gribov copies,which correspond to ambiguities in lattice gauge-fixing,are adequately controlled.This work assesses the effects of Gribov copies on Coulomb-gauge-fixed quark correlators.We utilize different strategies for Coulomb-gauge fixing,selecting two different groups of Gribov copies based on lattice gauge configurations.We examine the differences in the resulting spatial quark correlators in both vacuum and pion states.Our findings indicate that the statistical errors of the matrix elements from both Gribov copies,regardless of the correlation range,decrease proportionally to the square root of the number of gauge configurations.The difference between the strategies does not show statistical significance compared to the gauge noise,demonstrating that the effect of the Gribov copies can be neglected in practical lattice calculations of quark parton distributions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.GG2030007011(WZ),GG203004045(WZ),12374477(PZ))Innovation Program for Quantum Science and Technology(Grant No.2021ZD0302004(WZ))。
文摘Gauge field theory is a fundamental concept in modern physics,attracting many theoretical and experimental efforts towards its simulation.In this paper we propose that a simple model,in which fermions coupled to a dynamical lattice gauge field,can be engineered via the Floquet approach.The model possesses both an independent Maxwell term and local Z_(2) gauge symmetry.Our proposal relies on a species-dependent optical lattice,and can be achieved in one,two or three dimensions.By a unitary transformation,this model can be mapped into a non-interacting composite fermion system with fluctuating background charge.With the help of this composite fermion picture,two characteristic observations are predicted.One is radio-frequency spectroscopy,which exhibits no dispersion in all parameter regimes.The second is dynamical localization,which depends on the structure of the initial states.
基金the University of French Polynesiafunding by several successive“Decision Aide a la Recherche”(DAR)grants to the Geodesy Observatory of Tahiti from the French Space Agency(CNES)+2 种基金fundings from the local government of French Polynesia(Observatoire Polynesien du Rechauffement Climatique)funding by“National Natural Science Foundation of China”(Grand No.41931075)funding by“the Fundamental Research Funds for the Central Universities"(Grand No.2042022kf1198)。
文摘In this study,we estimate the absolute vertical land motions at three tidal stations with collocated Global Navigation Satellite System(GNSS)receivers over French Polynesia during the period 2007-2020,and obtain,as ancillary results,estimates of the absolute changes in sea level at the same locations.To verify our processing approach to determining vertical motion,we first modeled vertical motion at the International GNSS Service(IGS)THTI station located in the capital island of Tahiti and compared our estimate with previous independent determinations,with a good agreement.We obtained the following estimates for the vertical land motions at the tide gauges:Tubuai island,Austral Archipelago-0.92±0.17 mm/yr,Vairao village,Tahiti Iti:-0.49±0.39 mm/yr,Rikitea,Gambier Archipelago-0.43±0.17 mm/yr.The absolute variations of the sea level are:Tubuai island,Austral Archipelago 5.25±0.60 mm/yr,Vairao village,Tahiti Iti:3.62±0.52 mm/yr,Rikitea,Gambier Archipelago 1.52±0.23 mm/yr.We discuss these absolute values in light of the values obtained from altimetric measurements and other means in French Polynesia.
文摘We propose the new field potential by maintaining both the symmetry of the scalar gauge and the conservation law keeping N?ether’s theorem, while disregarding the symmetry of the vector gauge. The new potential forms like the well-type potential where a particle behaves almost freely but is very hard to escape without external energy, which can be interpreted as local confinement and asymptotic freedom. By assuming a 2-dimensional metric tensor in 4-dimensional space-time, we suggest the existence of 3 kinds of particles that resemble QCD with 3 color charges. We also show that the mass term exists but comes to zero and derive the charge and spin values. We can regard the particle with this new potential as a gluon, and the interaction in this well-type potential as a strong interaction for the properties of mass, charge, spin, and its behavior. We suggest the eight-fold way with this new particle, which is similar to the existing method based on SU (3) symmetry. Even though the strong interaction has been analyzed in the standard model and string theory, we build a new consistent model based on the theory of relativity including Riemann geometry, and show the unification of gravitational and strong interactional field.
文摘Objectives: As therapeutic modalities for rheumatoid arthritis (RA) advance, immediate and quantitative determination of RA disease status is becoming increasingly important. The purpose of this study was to validate the usefulness of a ring gauge as a simple semiquantitative method for assessing hand swelling in patients with RA. Methods: We enrolled patients diagnosed with RA either initiated or switched to a biological therapeutic agent. The circumference of the interphalangeal (IP) joint and the proximal interphalangeal (PIP) joint was measured using a ring gauge. Assessments of the joint echocardiography, incorporating both Gray Scale (GS) and Power Doppler (PD) imaging, were conducted. These evaluations were performed both before the initiation of biological agent treatment and 28 days after the initial dose. Results: Following the treatment intervention, a significant reduction was observed in the circumference of the joint from the thumb to the little finger (p Conclusions: Our study demonstrated the effectiveness of using a ring gauge as a simple assessment tool for RA, revealing that a change in the ring gauge number by 2 or more corresponded to either improvement or deterioration in synovial thickening detected via joint echocardiography.
基金funded by the Fund Project of China Academy of Railway Sciences Corporation Limited[Grant No.2022YJ194,2023YJ254].
文摘Purpose-This paper aims to analyze the stress and strain distribution on the track wheel web surface and study the optimal strain gauge location for force measurement system of the track wheel.Design/methodology/approach-Finite element method was employed to analyze the stress and strain distribution on the track wheel web surface under varying wheel-rail forces.Locations with minimal coupling interference between vertical and lateral forces were identified as suitable for strain gauge installation.Findings-The results show that due to the track wheel web’s unique curved shape and wheel-rail force loading mechanism,both tensile and compressive states exit on the surface of the web.When vertical force is applied,Mises stress and strain are relatively high near the inner radius of 710 mm and the outer radius of 1110mmof the web.Under lateral force,high Mises stress and strain are observed near the radius of 670mmon the inner and outer sides of the web.As the wheel-rail force application point shifts laterally toward the outer side,the Mises stress and strain near the inner radius of 710 mm of the web gradually decrease under vertical force while gradually increasing near the outer radius of 1110 mm of the web.Under lateral force,the Mises stress and strain on the surface of the web remain relatively unchanged regardless of the wheel-rail force application point.Based on the analysis of stress and strain on the surface of the web under different wheel-rail forces,the inner radius of 870 mm is recommended as the optimal mounting location of strain gauges for measuring vertical force,while the inner radius of 1143 mm is suitable for measuring lateral force.Originality/value-The research findings provide valuable insights for determining optimal strain gauge locations and designing an effective track wheel force measurement system.
文摘Using the Landau and symmetric gauges for the vector potential of a constant magnetic field and the quantum problem of a charged particle moving on a flat surface, we show the classical electromagnetic gauge transformation does not correspond to a one-dimensional unitary group transformation U(1) of the wave function for the quantum case. In addition, with the re-examination of the relation between the magnetic field B and its vector potential A, we found that, in order to have a consistent formulation of the dynamics of the charged particle with both expressions, we must have that B=∇×A if and only if B≠0.
文摘A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
文摘For a long time, it has been generally believed that spin-spin interactions can only exist in a theory where Lorentz symmetry is gauged, and a theory with spin-spin interactions is not perturbatively renormalizable. But this is not true. By studying the motion of a spinning particle in gravitational field, it is found that there exist spin-spin interactions in gauge theory of gravity. Its mechanism is that a spinning particle will generate gravitomagnetic field in space-time, and this gravitomagnetic field will interact with the spin of another particle, which will cause spin-spin interactions. So, spin-spin interactions are transmitted by gravitational field. The form of spin-spin interactions in post Newtonian approximations is deduced. This result can also be deduced from the Papapetrou equation. This kind of interaction will not affect the renormalizability of the theory. The spin-spin interactions will violate the weak equivalence principle, and the violation effects are detectable. An experiment is proposed to detect the effects of the violation of the weak equivalence principle.
文摘In this paper, we have proposed the theory of gravity gauge, and the gravity theory has been introduced into quantum field theory. We have further given the tensor equation of gravity field in the flat space, and found the gravity field equation is the Lorentz covariant and gauge invariant. The gravity theory can be quantized and can be unified with the electroweak and strong interaction at a new gauge group .
基金Supported by National Natural Science Foundation of China under Grant Nos.10775140,10975141Knowledge Innovation Funds of CAS under Grant No.KJCX3-SYW-S03
文摘A new static de Sitter solution with torsion in the model of de Sitter gauge theory of gravity is obtained. The torsion only contains Q(3)-symmetric tensor part according to irreducible decomposition. Some properties of the new solution are discussed.
文摘A cosmological model based on gauge theory of gravity is proposed in thispaper. Combining cosmological principle and field equation of gravitational gauge field, dynamicalequations of the scale factor R(t) of our universe can be obtained. This set of equations has threedifferent solutions. A prediction of the present model is that, if the energy density of theuniverse is not zero and the universe is expanding, the universe must be space-fiat, the totalenergy density must be the critical density ρ_c of the universe. For space-Bat case, this modelgives the same solution as that of the Friedmann model. In other words, though they have differentdynamics of gravitational interactions, general relativity and gauge theory of gravity give the samecosmological model.
基金supported by the Project of Stable Support for Youth Teams in Basic Research Field,Chinese Academy of Sciences(CASGrant No.YSBR-018)+2 种基金the B-type Strategic Priority Program of CAS(Grant No.XDB41000000)the National Natural Science Foundation of China(Grant No.42204165)the National Key Research and Development Program(Grant No.2022YFF0504400).
文摘In addition to being driven by tidal winds,the sporadic E(Es)layers are modulated by gravity waves(GWs),although the effects are not yet comprehensively understood.In this article,we discuss the effects of mesoscale GWs on the Es layers determined by using a newly developed model,MISE-1D(one-dimensional Model of Ionospheric Sporadic E),with low numerical dissipation and high resolution.Driven by the wind fields resolved by the high-resolution version of the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension(WACCM-X),the MISE-1D simulation revealed that GWs significantly influence the evolution of the Es layer above 100 km but have a very limited effect at lower altitudes.The effects of GWs are diverse and complex,generally including the generation of fluctuating wavelike structures on the Es layer with frequencies similar to those of the GWs.The mesoscale GWs can also cause increases in the density of Es layers,or they can disperse or diffuse the Es layers and increase their thickness.In addition,the presence of GWs is a key factor in sustaining the Es layers in some cases.
基金supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).supported by the Fundamental Research Funds for the Central Universities,CHD(NO.300102263205 and NO.300102264916)the West Light Cross-Disciplinary Innovation team of Chinese Academy of Sciences(NO.E1294301).
文摘The meteor radar can detect the zenith angle,azimuth,radial velocity,and altitude of meteor trails so that one can invert the wind profiles in the mesosphere and low thermosphere(MLT)region,based on the Interferometric and Doppler techniques.In this paper,the horizontal wind field,gravity wave(GW)disturbance variance,and GW fluxes are analyzed through the meteor radar observation from 2012−2022,at Mohe(53.5°N,122.4°E)and Zuoling(30.5°N,114.6°E)stations of the(Chinese)Meridian Project.The Lomb−Scargle periodogram method has been utilized to analyze the periodic variations for time series with observational data gaps.The results show that the zonal winds at both stations are eastward dominated,while the meridional winds are southward dominated.The variance of GW disturbances in the zonal and meridional directions increases gradually with height,and there is a strong pattern of annual variation.The zonal momentum flux of GW changes little with height,showing weak annual variation.The meridional GW flux varies gradually from northward to southward with height,and the annual periodicity is stronger.For both stations,the maximum values of zonal and meridional wind occur close to the peak heights of GW flux,with opposite directions.This observational evidence is consistent with the filtering theory.The horizontal wind velocity,GW flux,and disturbance variance of the GW at Mohe are overall smaller than those at Zuoling,indicating weaker activities in the MLT at Mohe.The power spectral density(PSD)calculated by the Lomb−Scargle periodogram shows that there are 12-month period and 6-month period in horizontal wind field,GW disturbance variance and GW flux at both stations,and especially there is also a 4-month cycle in the disturbance variance.The PSD of the 12-month and 6-month cycles exhibits maximum values below 88 km and above 94 km.
文摘Inertial and gravitational mass or energy momentum need not be the same for virtual quantum states. Separating their roles naturally leads to the gauge theory of volume-preserving diffeomorphisms of an inner four-dimensional space. The gauge-fixed action and the path integral measure occurring in the generating functional for the quantum Green functions of the theory are shown to obey a BRST-type symmetry. The related Zinn-Justin-type equation restricting the corresponding quantum effective action is established. This equation limits the infinite parts of the quantum effective action to have the same form as the gauge-fixed Lagrangian of the theory proving its spacetime renormalizability. The inner space integrals occurring in the quantum effective action which are divergent due to the gauge group’s infinite volume are shown to be regularizable in a way consistent with the symmetries of the theory demonstrating as a byproduct that viable quantum gauge field theories are not limited to finite-dimensional compact gauge groups as is commonly assumed.
文摘We use the theory based on the gravitational gauge group G to obtain a spherical symmetric solution of the field equations for the gravitational potentials on a Minkowski space-time. The gauge group G is defined and then we introduce the gauge-covariant derivative Dμ. The strength tensor of the gravitational gauge field is also obtained and a gauge-invariant Lagrangian including the cosmological constant is constructed. A model whose gravitational gauge potentials A^α μ (x) have spherical symmetry, depending only on the radial coordinate τ is considered and an analytical solution of these equations, which induces the Schwarzschild-de-Sitter metric on the gauge group space, is then determined. All the calculations have been performed by GR Tensor II computer algebra package, running on the Maple V platform, along with several routines that we have written for our model.
基金supported by National Natural Science Foundation of China under Grant No.10675019
文摘It is well known that the Poincaré gauge theories of gravity do not have the structure of a standard gauge theory. Nevertheless, we show that a general form of action for the gravitational gauge fields in the gauge theory does possess local Poincaré invariance.