The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In th...The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.展开更多
In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory ...In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.展开更多
A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge fie...A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.展开更多
In this paper, we have proposed the theory of gravity gauge, and the gravity theory has been introduced into quantum field theory. We have further given the tensor equation of gravity field in the flat space, and foun...In this paper, we have proposed the theory of gravity gauge, and the gravity theory has been introduced into quantum field theory. We have further given the tensor equation of gravity field in the flat space, and found the gravity field equation is the Lorentz covariant and gauge invariant. The gravity theory can be quantized and can be unified with the electroweak and strong interaction at a new gauge group .展开更多
A non-Abelian gauge field is introduced to maintain the gauge invariance for the self-similar transformation, resulting in three conservation laws. It has been found that the non-Abelian gauge field is suitable to ele...A non-Abelian gauge field is introduced to maintain the gauge invariance for the self-similar transformation, resulting in three conservation laws. It has been found that the non-Abelian gauge field is suitable to electromagnetic interaction. The Fermi-Bose duality for blocks makes blocks act as both fermi-blocks involving in spin interaction and non-spin interaction and bose-blocks carrying non-spin interaction. The self-similar transformation requires the block type inversion guaranteed by the gauge field. There is a constant and minimization entropy reduction in the transformation. It is realized that there is degeneracy of critical temperatures in the experiments for real materials. The thermodynamic dark parameters associated with the non-spin interaction should be taken seriously.展开更多
A theory of quantum gravity has recently been developed by the author based on the concept that all forces converge to one at the moment of Creation. This primordial field can only interact with itself, as no other fi...A theory of quantum gravity has recently been developed by the author based on the concept that all forces converge to one at the moment of Creation. This primordial field can only interact with itself, as no other field exists, contrasting with the Standard Model of Particle Physics in which each elementary particle is an excitation in its own quantum field. The primordial field theory of quantum gravity has produced a model of a fermion with a mass gap, ½-integral spin, discrete charge, and magnetic moment. The mass gap is based on an existence theorem that is anchored in Yang-Mills, while Calabi-Yau anchors ½-integral spin, with charge and magnetic moment based on duality. Based on N-windings, this work is here extended to encompass fractional charge, with the result applied to quarks, yielding fermion mass and charge in agreement with experiment and novel size correlations and a unique quantum gravity-based ontological understanding of quarks.展开更多
A new static de Sitter solution with torsion in the model of de Sitter gauge theory of gravity is obtained. The torsion only contains Q(3)-symmetric tensor part according to irreducible decomposition. Some propertie...A new static de Sitter solution with torsion in the model of de Sitter gauge theory of gravity is obtained. The torsion only contains Q(3)-symmetric tensor part according to irreducible decomposition. Some properties of the new solution are discussed.展开更多
This paper presents a new theory of gravity, called here Ashtekar-Kodama (AK) gravity, which is based on the Ashtekar-Kodama formulation of loop quantum gravity (LQG), yields in the limit the Einstein equations, and i...This paper presents a new theory of gravity, called here Ashtekar-Kodama (AK) gravity, which is based on the Ashtekar-Kodama formulation of loop quantum gravity (LQG), yields in the limit the Einstein equations, and in the quantum regime a full renormalizable quantum gauge field theory. The three fundamental constraints (hamiltonian, gaussian and diffeomorphism) were formulated in 3-dimensional spatial form within LQG in Ashtekar formulation using the notion of the Kodama state with positive cosmological constant Λ. We introduce a 4-dimensional covariant version of the 3-dimensional (spatial) hamiltonian, gaussian and diffeomorphism constraints of LQG. We obtain 32 partial differential equations for the 16 variables E<sub>mn</sub> (E-tensor, inverse densitized tetrad of the metric) and 16 variables A<sub>mn</sub> (A-tensor, gravitational wave tensor). We impose the boundary condition: for large distance the E-generated metric g(E) becomes the GR-metric g (normally Schwarzschild-spacetime). The theory based on these Ashtekar-Kodama (AK) equations, and called in the following Ashtekar-Kodama (AK-) gravity has the following properties. • For Λ = 0 the AK equations become Einstein equations, A-tensor is trivial (constant), and the E-generated metric g(E) is identical with the GR-metric g. • When the AK-equations are developed into a Λ-power series, the Λ-term yields a gravitational wave equation, which has only at least quadrupole wave solutions and becomes in the limit of large distance r the (normal electromagnetic) wave equation. • AK-gravity, as opposed to GR, has no singularity at the horizon: the singularity in the metric becomes a (very high) peak. • AK-gravity has a limit scale of the gravitational quantum region 39 μm, which emerges as the limit scale in the objective wave collapse theory of Gherardi-Rimini-Weber. In the quantum region, the AK-gravity becomes a quantum gauge theory (AK quantum gravity) with the Lie group extended SU(2) = ε-tensor-group(four generators) as gauge group and a corresponding covariant derivative. • AK quantum gravity is fully renormalizable, we derive its Lagrangian, which is dimensionally renormalizable, the normalized one-graviton wave function, the graviton propagator, and demonstrate the calculation of cross-section from Feynman diagrams.展开更多
A model fermion has been produced in a theory of quantum gravity that establishes the existence of a mass gap and half-integral spin. The third requirement for the fermion is electric charge. We herein develop a duali...A model fermion has been produced in a theory of quantum gravity that establishes the existence of a mass gap and half-integral spin. The third requirement for the fermion is electric charge. We herein develop a dualism-based analysis that explains the origin of charge at the fermion scale in a primordial field theory of quantum gravity.展开更多
In this paper, a general theory on unification of non-Abelian SU(N) gauge interactions and gravitationalinteractions is discussed. SU(N) gauge interactions and gravitational interactions are formulated on the similar ...In this paper, a general theory on unification of non-Abelian SU(N) gauge interactions and gravitationalinteractions is discussed. SU(N) gauge interactions and gravitational interactions are formulated on the similar basisand are unified in a semi-direct product group GSU(N). Based on this model, we can discuss unification of fundamentalinteractions of Nature.展开更多
A new method for the unification of gravitational and electromagnetic forces is proposed. Previously, Kaluza-Klein theory dealt with the unification, but it has not yet been established as a complete theory. The main ...A new method for the unification of gravitational and electromagnetic forces is proposed. Previously, Kaluza-Klein theory dealt with the unification, but it has not yet been established as a complete theory. The main reason for this is that Kaluza-Klein theory has various contradictions due to the use of a 5-dimensional metric tensor. In this paper, unlike the conventional method, various equations related to gravitational and electromagnetic force are derived without any contradiction by processing equations having gauge symmetry within a 4-dimensional range. In this process, we propose that Maxwell’s equations for the electromagnetic force are expressed more simply and implicitly than the existing tensor form. Using the gauge symmetry, it shows that electromagnetic force can exist in single metric tensor along with gravity. In addition, since geodesic equations can be derived in the form of coordinate transformation, it has been shown that they are consistent with the existing equations. As a result, it has shown that they are consistent with the existing physical equations without contradiction.展开更多
This paper deals with the generalization of the linear theory of the unification of gravitational and electromagnetic fields using 4-dimensional gauge symmetry in order to solve the contradictions from the Kaluza-Klei...This paper deals with the generalization of the linear theory of the unification of gravitational and electromagnetic fields using 4-dimensional gauge symmetry in order to solve the contradictions from the Kaluza-Klein theory’s unification of the gravitational and electromagnetic fields. The unification of gravitational and electromagnetic fields in curved space-time starts from the Bianchi identity, which is well known as a mathematical generalization of the gravitational equation, and by using the existing gauge symmetry condition, equations for the gravitational and electromagnetic fields can be obtained. In particular, the homogeneous Maxwell’s equation can be obtained from the first Bianchi identity, and the inhomogeneous Maxwell’s equation can be obtained from the second Bianchi identity by using Killing’s equation condition of the curved space-time. This paper demonstrates that gravitational and electromagnetic fields can be derived from one equation without contradiction even in curved space-time, thus proving that the 4-dimensional metric tensor using the gauge used for this unification is more complete. In addition, geodesic equations can also be derived in the form of coordinate transformation, showing that they are consistent with the existing equations, and as a result, they are consistent with the existing physical equations.展开更多
Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In qua...Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge field, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.展开更多
Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantu...Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.展开更多
The height changes of tide gauges directly influence sea level observation. For research of sea level variation in large region or globe, the land vertical displacement must be considered. Two sessions of GPS and abso...The height changes of tide gauges directly influence sea level observation. For research of sea level variation in large region or globe, the land vertical displacement must be considered. Two sessions of GPS and absolute gravity observations in 2001 and 2003 are used to determine the horizontal and vertical motion of China coast in ITRF2000 and Eurasia frame. The difference between results of continuous observation and periodic observation is discussed.展开更多
A primordial field Self-interaction Principle, analyzed in Hestenes’ Geometric Calculus, leads to Heaviside’s equations of the gravitomagnetic field. When derived from Einstein’s nonlinear field equations Heaviside...A primordial field Self-interaction Principle, analyzed in Hestenes’ Geometric Calculus, leads to Heaviside’s equations of the gravitomagnetic field. When derived from Einstein’s nonlinear field equations Heaviside’s “linearized” equations are known as the “weak field approximation”. When derived from the primordial field equation, there is no mention of field strength;the assumption that the primordial field was predominant at the big bang rather suggests that ultra-strong fields are governed by the equations. This aspect has physical significance, so we explore the assumption by formulating the gauge field version of Heaviside’s theory. We compare with recent linearized gravity formulations and discuss the significance of differences.展开更多
We have reestablished the SU (5) grand unified model according to new research results in order to clarify some misunderstandings to the model. On this basis the unified gauge model describing four interactions contai...We have reestablished the SU (5) grand unified model according to new research results in order to clarify some misunderstandings to the model. On this basis the unified gauge model describing four interactions containing gravity has been established, and its results are consistent with experiments.展开更多
The different roles and natures of spacetime appearing in a quantum field theory and in classical physics are analyzed implying that a quantum theory of gravitation is not necessarily a quantum theory of curved spacet...The different roles and natures of spacetime appearing in a quantum field theory and in classical physics are analyzed implying that a quantum theory of gravitation is not necessarily a quantum theory of curved spacetime. Developing an alternative approach to quantum gravity starts with the postulate that inertial energy-momentum and gravitational energy-momentum need not be the same for virtual quantum states. Separating their roles naturally leads to the quantum gauge field theory of volume-preserving diffeomorphisms of an inner four-dimensional space. The classical limit of this theory coupled to a quantized scalar field is derived for an on-shell particle where inertial energy-momentum and gravitational energy-momentum coincide. In that process the symmetry under volume-preserving diffeomorphisms disappears and a new symmetry group emerges: the group of coordinate transformations of four-dimensional spacetime and with it General Relativity coupled to a classical relativistic point particle.展开更多
In this paper we propose a new gauge term in addition to the conventional gauge to acquire complete solution for the linear approximated gravitational equation. The calculation to make general form for the linear grav...In this paper we propose a new gauge term in addition to the conventional gauge to acquire complete solution for the linear approximated gravitational equation. The calculation to make general form for the linear gravitational equation uses the well-known N?ether’s theorem saying that gauge symmetry is equal to conservation law. The unsolved coefficients in the equation require another condition which is leading to new gauge term. This proposed new gauge is a tensor product by a scalar quantity with a metric tensor having the trace value of 2. The scalar component in the 5th row and column of Kaluza-Klein’s metric tensor can be found as 2 diagonal components in our proposed 4×4 metric tensor. We also show that only a constant scalar gauge can be allowed in the curved space-time although arbitrary gauge can exist in the linear space-time.展开更多
Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an ...Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an aperture of at least four meters. With the support of their governments in the US, Europe, and Canada, 20,000 people brought this vision to life as the 6.5-meter James Webb Space Telescope (JWST). The telescope is working perfectly, delivering much better image quality than expected [1]. JWST is one hundred times more powerful than the Hubble Space Telescope and has already captured spectacular images of the distant universe. A view of a tiny part of the sky reveals many well-formed spiral galaxies, some over thirteen billion light-years away. These observations challenge the standard Big Bang Model (BBM), which posits that early galaxies should be small and lack well-formed spiral structures. JWST’s findings are prompting scientists to reconsider the BBM in its current form. Throughout the history of science, technological advancements have led to new results that challenge established theories, sometimes necessitating their modification or even abandonment. This happened with the geocentric model four centuries ago, and the BBM may face a similar reevaluation as JWST provides more images of the distant universe. In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of Variable Gravitational Constant, later incorporating the concept of Continuous Creation of Matter in the universe. The Hypersphere World-Universe Model (WUM) builds on these ideas, introducing a distinct mechanism for matter creation. WUM is proposed as an alternative to the prevailing BBM. Its main advantage is the elimination of the “Initial Singularity” and “Inflation”, offering explanations for many unresolved problems in Cosmology. WUM is presented as a natural extension of Classical Physics with the potential to bring about a significant transformation in both Cosmology and Classical Physics. Considering JWST’s discoveries, WUM’s achievements, and 87 years of Dirac’s proposals, it is time to initiate a fundamental transformation in Astronomy, Cosmology, and Classical Physics. The present paper is a continuation of the published article “JWST Discoveries—Confirmation of World-Universe Model Predictions” [2] and a summary of the paper “Hypersphere World-Universe Model: Digest of Presentations John Chappell Natural Philosophy Society” [3]. Many results obtained there are quoted in the current work without full justification;interested readers are encouraged to view the referenced papers for detailed explanations.展开更多
文摘The quantum gravity is formulated based on the principle of local gauge invariance. The model discussedin this paper has local gravitational gauge symmetry, and gravitational field is represented by gauge field. In the leading-order approximation, it gives out classical Newton's theory of gravity. In the first-order approximation and for vacuum,it gives out Einstein's general theory of relativity. This quantum gauge theory of gravity is a renormalizable quantumtheory.
文摘In 1992,E.E.Podkletnov and R.Nieminen found that under certain conditions,ceramic superconductor with composite structure reveals weak shielding properties against gravitational force.In classical Newton's theory of gravity and even in Einstein's general theory of gravity,there are no grounds of gravitational shielding effects.But in quantum gauge theory of gravity,the gravitational shielding effects can be explained in a simple and natural way.In quantum gauge theory of gravity,gravitational gauge interactions of complex scalar field can be formulated based on gauge principle.After spontaneous symmetry breaking,if the vacuum of the complex scalar field is not stable and uniform,there will be a mass term of gravitational gauge field.When gravitational gauge field propagates in this unstable vacuum of the complex scalar field,it will decays exponentially,which is the nature of gravitational shielding effects.The mechanism of gravitational shielding effects is studied in this paper,and some main properties of gravitational shielding effects are discussed.
文摘A systematic method is developed to studY the classical motion of a mass point in gravitational gauge field. First, by using Mathematica, a spherical symmetric solution of the field equation of gravitational gauge field is obtained, which is just the traditional Schwarzschild solution. Combining the principle of gauge covariance and Newton's second law of motion, the equation of motion of a mass point in gravitational field is deduced. Based on the spherical symmetric solution of the field equation and the equation of motion of a mass point in gravitational field, we can discuss classical tests of gauge theory of gravity, including the deflection of light by the sun, the precession of the perihelia of the orbits of the inner planets and the time delay of radar echoes passing the sun. It is found that the theoretical predictions of these classical tests given by gauge theory of gravity are completely the same as those given by general relativity.
文摘In this paper, we have proposed the theory of gravity gauge, and the gravity theory has been introduced into quantum field theory. We have further given the tensor equation of gravity field in the flat space, and found the gravity field equation is the Lorentz covariant and gauge invariant. The gravity theory can be quantized and can be unified with the electroweak and strong interaction at a new gauge group .
文摘A non-Abelian gauge field is introduced to maintain the gauge invariance for the self-similar transformation, resulting in three conservation laws. It has been found that the non-Abelian gauge field is suitable to electromagnetic interaction. The Fermi-Bose duality for blocks makes blocks act as both fermi-blocks involving in spin interaction and non-spin interaction and bose-blocks carrying non-spin interaction. The self-similar transformation requires the block type inversion guaranteed by the gauge field. There is a constant and minimization entropy reduction in the transformation. It is realized that there is degeneracy of critical temperatures in the experiments for real materials. The thermodynamic dark parameters associated with the non-spin interaction should be taken seriously.
文摘A theory of quantum gravity has recently been developed by the author based on the concept that all forces converge to one at the moment of Creation. This primordial field can only interact with itself, as no other field exists, contrasting with the Standard Model of Particle Physics in which each elementary particle is an excitation in its own quantum field. The primordial field theory of quantum gravity has produced a model of a fermion with a mass gap, ½-integral spin, discrete charge, and magnetic moment. The mass gap is based on an existence theorem that is anchored in Yang-Mills, while Calabi-Yau anchors ½-integral spin, with charge and magnetic moment based on duality. Based on N-windings, this work is here extended to encompass fractional charge, with the result applied to quarks, yielding fermion mass and charge in agreement with experiment and novel size correlations and a unique quantum gravity-based ontological understanding of quarks.
基金Supported by National Natural Science Foundation of China under Grant Nos.10775140,10975141Knowledge Innovation Funds of CAS under Grant No.KJCX3-SYW-S03
文摘A new static de Sitter solution with torsion in the model of de Sitter gauge theory of gravity is obtained. The torsion only contains Q(3)-symmetric tensor part according to irreducible decomposition. Some properties of the new solution are discussed.
文摘This paper presents a new theory of gravity, called here Ashtekar-Kodama (AK) gravity, which is based on the Ashtekar-Kodama formulation of loop quantum gravity (LQG), yields in the limit the Einstein equations, and in the quantum regime a full renormalizable quantum gauge field theory. The three fundamental constraints (hamiltonian, gaussian and diffeomorphism) were formulated in 3-dimensional spatial form within LQG in Ashtekar formulation using the notion of the Kodama state with positive cosmological constant Λ. We introduce a 4-dimensional covariant version of the 3-dimensional (spatial) hamiltonian, gaussian and diffeomorphism constraints of LQG. We obtain 32 partial differential equations for the 16 variables E<sub>mn</sub> (E-tensor, inverse densitized tetrad of the metric) and 16 variables A<sub>mn</sub> (A-tensor, gravitational wave tensor). We impose the boundary condition: for large distance the E-generated metric g(E) becomes the GR-metric g (normally Schwarzschild-spacetime). The theory based on these Ashtekar-Kodama (AK) equations, and called in the following Ashtekar-Kodama (AK-) gravity has the following properties. • For Λ = 0 the AK equations become Einstein equations, A-tensor is trivial (constant), and the E-generated metric g(E) is identical with the GR-metric g. • When the AK-equations are developed into a Λ-power series, the Λ-term yields a gravitational wave equation, which has only at least quadrupole wave solutions and becomes in the limit of large distance r the (normal electromagnetic) wave equation. • AK-gravity, as opposed to GR, has no singularity at the horizon: the singularity in the metric becomes a (very high) peak. • AK-gravity has a limit scale of the gravitational quantum region 39 μm, which emerges as the limit scale in the objective wave collapse theory of Gherardi-Rimini-Weber. In the quantum region, the AK-gravity becomes a quantum gauge theory (AK quantum gravity) with the Lie group extended SU(2) = ε-tensor-group(four generators) as gauge group and a corresponding covariant derivative. • AK quantum gravity is fully renormalizable, we derive its Lagrangian, which is dimensionally renormalizable, the normalized one-graviton wave function, the graviton propagator, and demonstrate the calculation of cross-section from Feynman diagrams.
文摘A model fermion has been produced in a theory of quantum gravity that establishes the existence of a mass gap and half-integral spin. The third requirement for the fermion is electric charge. We herein develop a dualism-based analysis that explains the origin of charge at the fermion scale in a primordial field theory of quantum gravity.
文摘In this paper, a general theory on unification of non-Abelian SU(N) gauge interactions and gravitationalinteractions is discussed. SU(N) gauge interactions and gravitational interactions are formulated on the similar basisand are unified in a semi-direct product group GSU(N). Based on this model, we can discuss unification of fundamentalinteractions of Nature.
文摘A new method for the unification of gravitational and electromagnetic forces is proposed. Previously, Kaluza-Klein theory dealt with the unification, but it has not yet been established as a complete theory. The main reason for this is that Kaluza-Klein theory has various contradictions due to the use of a 5-dimensional metric tensor. In this paper, unlike the conventional method, various equations related to gravitational and electromagnetic force are derived without any contradiction by processing equations having gauge symmetry within a 4-dimensional range. In this process, we propose that Maxwell’s equations for the electromagnetic force are expressed more simply and implicitly than the existing tensor form. Using the gauge symmetry, it shows that electromagnetic force can exist in single metric tensor along with gravity. In addition, since geodesic equations can be derived in the form of coordinate transformation, it has been shown that they are consistent with the existing equations. As a result, it has shown that they are consistent with the existing physical equations without contradiction.
文摘This paper deals with the generalization of the linear theory of the unification of gravitational and electromagnetic fields using 4-dimensional gauge symmetry in order to solve the contradictions from the Kaluza-Klein theory’s unification of the gravitational and electromagnetic fields. The unification of gravitational and electromagnetic fields in curved space-time starts from the Bianchi identity, which is well known as a mathematical generalization of the gravitational equation, and by using the existing gauge symmetry condition, equations for the gravitational and electromagnetic fields can be obtained. In particular, the homogeneous Maxwell’s equation can be obtained from the first Bianchi identity, and the inhomogeneous Maxwell’s equation can be obtained from the second Bianchi identity by using Killing’s equation condition of the curved space-time. This paper demonstrates that gravitational and electromagnetic fields can be derived from one equation without contradiction even in curved space-time, thus proving that the 4-dimensional metric tensor using the gauge used for this unification is more complete. In addition, geodesic equations can also be derived in the form of coordinate transformation, showing that they are consistent with the existing equations, and as a result, they are consistent with the existing physical equations.
文摘Gravitational interactions of Dirac field are studied in this paper. Based on gauge principle, quantum gauge theory of gravity, which is perturbatively renormalizable, is formulated in the Minkowski space-time. In quantum gauge theory of gravity, gravity is treated as a kind of fundamental interactions, which is transmitted by gravitational gauge field, and Dirac field couples to gravitational field through gravitational gauge covariant derivative. Based on this theory, we can easily explain gravitational phase effect, which has already been detected by COW experiment.
文摘Gauge theory of gravity is formulated based on principle of local gauge invariance. Because the model hasstrict local gravitational gauge symmetry, and gauge theory of gravity is a perturbatively renormalizable quantum model.However, in the original model, all gauge gravitons are massless. We want to ask whether there exist massive gravitonsin Nature. In this paper, we will propose a gauge model with massive gravitons. The mass term of gravitational gaugefield is introduced into the theory without violating the strict local gravitational gauge symmetry. Massive gravitons canbe considered to be possible origin of dark energy and dark matter in the Universe.
文摘The height changes of tide gauges directly influence sea level observation. For research of sea level variation in large region or globe, the land vertical displacement must be considered. Two sessions of GPS and absolute gravity observations in 2001 and 2003 are used to determine the horizontal and vertical motion of China coast in ITRF2000 and Eurasia frame. The difference between results of continuous observation and periodic observation is discussed.
文摘A primordial field Self-interaction Principle, analyzed in Hestenes’ Geometric Calculus, leads to Heaviside’s equations of the gravitomagnetic field. When derived from Einstein’s nonlinear field equations Heaviside’s “linearized” equations are known as the “weak field approximation”. When derived from the primordial field equation, there is no mention of field strength;the assumption that the primordial field was predominant at the big bang rather suggests that ultra-strong fields are governed by the equations. This aspect has physical significance, so we explore the assumption by formulating the gauge field version of Heaviside’s theory. We compare with recent linearized gravity formulations and discuss the significance of differences.
文摘We have reestablished the SU (5) grand unified model according to new research results in order to clarify some misunderstandings to the model. On this basis the unified gauge model describing four interactions containing gravity has been established, and its results are consistent with experiments.
文摘The different roles and natures of spacetime appearing in a quantum field theory and in classical physics are analyzed implying that a quantum theory of gravitation is not necessarily a quantum theory of curved spacetime. Developing an alternative approach to quantum gravity starts with the postulate that inertial energy-momentum and gravitational energy-momentum need not be the same for virtual quantum states. Separating their roles naturally leads to the quantum gauge field theory of volume-preserving diffeomorphisms of an inner four-dimensional space. The classical limit of this theory coupled to a quantized scalar field is derived for an on-shell particle where inertial energy-momentum and gravitational energy-momentum coincide. In that process the symmetry under volume-preserving diffeomorphisms disappears and a new symmetry group emerges: the group of coordinate transformations of four-dimensional spacetime and with it General Relativity coupled to a classical relativistic point particle.
文摘In this paper we propose a new gauge term in addition to the conventional gauge to acquire complete solution for the linear approximated gravitational equation. The calculation to make general form for the linear gravitational equation uses the well-known N?ether’s theorem saying that gauge symmetry is equal to conservation law. The unsolved coefficients in the equation require another condition which is leading to new gauge term. This proposed new gauge is a tensor product by a scalar quantity with a metric tensor having the trace value of 2. The scalar component in the 5th row and column of Kaluza-Klein’s metric tensor can be found as 2 diagonal components in our proposed 4×4 metric tensor. We also show that only a constant scalar gauge can be allowed in the curved space-time although arbitrary gauge can exist in the linear space-time.
文摘Twenty-six years ago, a small committee report built upon earlier studies to articulate a compelling and poetic vision for the future of astronomy. This vision called for an infrared-optimized space telescope with an aperture of at least four meters. With the support of their governments in the US, Europe, and Canada, 20,000 people brought this vision to life as the 6.5-meter James Webb Space Telescope (JWST). The telescope is working perfectly, delivering much better image quality than expected [1]. JWST is one hundred times more powerful than the Hubble Space Telescope and has already captured spectacular images of the distant universe. A view of a tiny part of the sky reveals many well-formed spiral galaxies, some over thirteen billion light-years away. These observations challenge the standard Big Bang Model (BBM), which posits that early galaxies should be small and lack well-formed spiral structures. JWST’s findings are prompting scientists to reconsider the BBM in its current form. Throughout the history of science, technological advancements have led to new results that challenge established theories, sometimes necessitating their modification or even abandonment. This happened with the geocentric model four centuries ago, and the BBM may face a similar reevaluation as JWST provides more images of the distant universe. In 1937, P. Dirac proposed the Large Number Hypothesis and the Hypothesis of Variable Gravitational Constant, later incorporating the concept of Continuous Creation of Matter in the universe. The Hypersphere World-Universe Model (WUM) builds on these ideas, introducing a distinct mechanism for matter creation. WUM is proposed as an alternative to the prevailing BBM. Its main advantage is the elimination of the “Initial Singularity” and “Inflation”, offering explanations for many unresolved problems in Cosmology. WUM is presented as a natural extension of Classical Physics with the potential to bring about a significant transformation in both Cosmology and Classical Physics. Considering JWST’s discoveries, WUM’s achievements, and 87 years of Dirac’s proposals, it is time to initiate a fundamental transformation in Astronomy, Cosmology, and Classical Physics. The present paper is a continuation of the published article “JWST Discoveries—Confirmation of World-Universe Model Predictions” [2] and a summary of the paper “Hypersphere World-Universe Model: Digest of Presentations John Chappell Natural Philosophy Society” [3]. Many results obtained there are quoted in the current work without full justification;interested readers are encouraged to view the referenced papers for detailed explanations.