The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performan...The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity.展开更多
Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utiliz...Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.展开更多
In this paper, we have declined the formalism of the method of the Modified Atomic Orbital Theory (MAOT) applied to the calculations of energies of doubly excited states 2<em>snp</em>, 3<em>snp</e...In this paper, we have declined the formalism of the method of the Modified Atomic Orbital Theory (MAOT) applied to the calculations of energies of doubly excited states 2<em>snp</em>, 3<em>snp</em>, and 4<em>snp</em> Helium-like systems. Then we also applied the variational procedure of the Modified Atomic Orbital Theory to the computations of total energies, excitation energies of doubly-excited states 2<em>snp</em>, 3<em>snp</em>, 4<em>snp</em> types of Helium-like systems. The results obtained in this work are in good agreement with the experimental and theoretical values available.展开更多
We report in this paper energy positions of the 2P˚_2s^(2)2p^(2)(^(1)D)nd 2P,2P˚_2s^(2)2p^(2)(^(1)D)nd 2S,2P˚_2s^(2)2p^(2)(^(1)D)ns^(2)D,2P˚_2s^(2)2p^(2)(^(1)S)nd ^(2)D,and 2P˚_2s^(2)2p^(3)(^(3)P)np ^(2)D Rydberg seri...We report in this paper energy positions of the 2P˚_2s^(2)2p^(2)(^(1)D)nd 2P,2P˚_2s^(2)2p^(2)(^(1)D)nd 2S,2P˚_2s^(2)2p^(2)(^(1)D)ns^(2)D,2P˚_2s^(2)2p^(2)(^(1)S)nd ^(2)D,and 2P˚_2s^(2)2p^(3)(^(3)P)np ^(2)D Rydberg series in the photoionization spectra originating from 2P˚metastable state of O+ions.Calculations are performed up to n=30 using the Modified Orbital Atomic Theory(MAOT).The present results are compared to the experimental data of Aguilar which are the only available values.The accurate data presented in this work may be a useful guideline for future experimental and other theoretical studies.展开更多
We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are perf...We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are performed using the Modified Atomic Orbital Theory(MAOT)in the framework of a variational procedure.The purpose of this study required a mathematical development of the Hamiltonian applied to Slater-type wave function[1]combining with Hylleraas-type wave function[2].The study leads to analytical expressions which are carried out under special MAXIMA computational program.This first proposed MAOT variational procedure,leads to accurate results in good agreement as well as with available other theoretical results than experimental data.In the present work,a new correlated wave function is presented to express analytically the total energies for the 2s21S ground state and each doubly 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I excited states in the He-like systems.The present accurate data may be a useful guideline for future experimental and theoretical studies in the(nI^(2))systems.展开更多
The 2(1,0)n-1P°, 2(1,0)n +3P°, 2(0,1)n+1P°, and 2(0,1)n-3P° intershell Rydberg series of the helium-like ions are investigated in the framework of the modified Atomic Orbital Theory (MAOT). High-ly...The 2(1,0)n-1P°, 2(1,0)n +3P°, 2(0,1)n+1P°, and 2(0,1)n-3P° intershell Rydberg series of the helium-like ions are investigated in the framework of the modified Atomic Orbital Theory (MAOT). High-lying energy resonances of He and excitation energy of the he- lium-like Li+ up to n = 10 are tabulated. In addition, total energy positions for low-lying states (n1,3P° autoionizing states of two-electron systems.展开更多
We consider the effect of a magnetic field on the motion of an atomic electron in its orbit. The usual treatment deals with the change in magnetic dipole moment assuming the electron's speed changes but the radius...We consider the effect of a magnetic field on the motion of an atomic electron in its orbit. The usual treatment deals with the change in magnetic dipole moment assuming the electron's speed changes but the radius of its orbit remains unchanged. We derive the change in the magnetic dipole moment allowing both the speed and the radius to change. The cases of fixed radius on one hand and of fixed speed on the other are treated as special cases of our general case.展开更多
Resonance energies of the Cl II-[3s23p3(2D5/2)]nd and [3s23p3(2P3/2)]nd, Ar II-3s23p4(1D2)ns, nd and of the Kr II [4s24p4(1D2)]ns, nd and 4s24p4(3P2,3P1)]ns, 4s24p4(3D2)]ns, nd and 4s24p4(3D2, 1S0)]ns, nd Rydberg seri...Resonance energies of the Cl II-[3s23p3(2D5/2)]nd and [3s23p3(2P3/2)]nd, Ar II-3s23p4(1D2)ns, nd and of the Kr II [4s24p4(1D2)]ns, nd and 4s24p4(3P2,3P1)]ns, 4s24p4(3D2)]ns, nd and 4s24p4(3D2, 1S0)]ns, nd Rydberg series are reported. Natural widths of the Ar II-[3s23p4(1D2)]ns, nd series are also reported. Calculations are done in the framework of the Modified Atomic Orbital Theory (MAOT). Excellent agreements are obtained with available theoretical and experimental data. High lying accurate resonance energies up to n = 40 are tabulated. The possibility to use the MAOT formalism report rapidly with an excellent accuracy the position of the excitation resonances as well as their width within simple analytical formulae is demonstrated.展开更多
We report in this paper energy positions of the 2D<sup>0</sup>_2s<sup>2</sup>2p<sup>2</sup>(<sup>1</sup>D)nd(<sup>2</sup>F);2D<sup>0</sup>_2s<...We report in this paper energy positions of the 2D<sup>0</sup>_2s<sup>2</sup>2p<sup>2</sup>(<sup>1</sup>D)nd(<sup>2</sup>F);2D<sup>0</sup>_2s<sup>2</sup>2p<sup>2</sup>(<sup>1</sup>D)nd(<sup>2</sup>D);2D<sup>0</sup>_2s<sup>2</sup>2p<sup>2</sup>(<sup>1</sup>D)nd(<sup>2</sup>P);2D<sup>0</sup>_2s<sup>2</sup>2p<sup>2</sup>(<sup>1</sup>D)ns(<sup>2</sup>D);2D<sup>0</sup>_2s<sup>2</sup>2p<sup>3</sup>(<sup>3</sup>D)np(<sup>2</sup>P);2D<sup>0</sup>_2s<sup>2</sup>2p<sup>3</sup>(<sup>3</sup>D<sup>0</sup>)np(<sup>2</sup>F), and 4S<sup>0</sup>_2s<sup>2</sup>2p<sup>3</sup>(<sup>5</sup>S<sup>0</sup>)np(<sup>4</sup>P) Rydberg series in the photoionization spectra originating from 2D<sup>0</sup> and 4S<sup>0</sup> metastable states of O<sup>+</sup> ion. Calculations are performed up to n = 20 using the Modified Orbital Atomic Theory (MAOT) [1]. The present results are compared to the experimental data of Aguilar et al. [2] which are the only available values. The accurate data presented in this work may be a useful guideline for future experimental and other theoretical studies.展开更多
Inspired by MXene nanosheets and their regulation of surface functional groups,a series of Ti_(2)C‐based single‐atom electrocatalysts(TM@Ti_(2)CT_(x),TM=V,Cr,Mn,Fe,Co,and Ni)with two dif‐ferent functional groups(T=...Inspired by MXene nanosheets and their regulation of surface functional groups,a series of Ti_(2)C‐based single‐atom electrocatalysts(TM@Ti_(2)CT_(x),TM=V,Cr,Mn,Fe,Co,and Ni)with two dif‐ferent functional groups(T=–O and–S)was designed.The CO_(2)RR catalytic performance was stud‐ied using well‐defined ab initio calculations.Our results show that the CO_(2) molecule can be more readily activated on TM@Ti_(2)CO_(2) than the TM@Ti_(2)CS_(2) surface.Bader charge analysis reveals that the Ti_(2)CO_(2) substrate is involved in the adsorption reaction,and enough electrons are injected into the 2π*u orbital of CO_(2),leading to a V‐shaped CO_(2) molecular configuration and partial negative charge distribution.The V‐shaped CO_(2) further reduces the difficulty of the first hydrogenation reac‐tion step.The calculatedΔG of the first hydrogenation reaction on TM@Ti_(2)CO_(2) was significantly lower than that of the TM@Ti_(2)CS_(2) counterpart.However,the subsequent CO_(2) reduction pathways show that the UL of the potential determining step on TM@Ti_(2)CS_(2) is smaller than that of TM@Ti_(2)CO_(2).Combining the advantages of both TM@Ti_(2)CS_(2) and TM@Ti_(2)CO_(2),we designed a mixed functional group surface with–O and–S to anchor TM atoms.The results show that Cr atoms an‐chored on the surface of mixed functional groups exhibit high catalytic activity for the selective production of CH4.This study opens an exciting new avenue for the rational design of highly selec‐tive MXene‐based single‐atom CO_(2)RR electrocatalysts.展开更多
The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 d...The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 different single-atom catalysts using first-principles calculations.The stability of this system was first verified using formation energies,and it is discovered that N2 can be effectively adsorbed due to the synergistic effect between single atom catalysis and the Ti atoms.Examination of the electronic structure demonstrated that this design satisfies orbital symmetry matching where“acceptor-donor”interaction scenario can be realized.A new“enzymatic-distal”reaction mechanism that is a mixture of the enzymatic and distal pathways was also discovered.Among all of the candidates,Ni anchored on MXene system achieves an onset potential as low as–0.13 V,which to the best of our knowledge is the lowest onset potential value reported to date.This work elucidates the significance of orbital symmetry matching and provides theoretical guidance for future studies.展开更多
Electrodynamics of the one-electron currents due to the circular orbital motion of the electron particle in the hydrogen atom has been examined. The motion is assumed to be induced by the time change of the magnetic f...Electrodynamics of the one-electron currents due to the circular orbital motion of the electron particle in the hydrogen atom has been examined. The motion is assumed to be induced by the time change of the magnetic field in the atom. A characteristic point is that the electric resistance calculated for the motion is independent of the orbit index and its size is similar to that obtained earlier experimentally for the planar free-electron-like structures considered in the integer quantum Hall effect. Other current parameters like conductivity and the relaxation time behave in a way similar to that being typical for metals. A special attention was attached to the relations between the current intensity and magnetic field. A correct reproduction of this field with the aid of the Biot-Savart law became possible when the geometrical microstructure of the electron particle has been explicitly taken into account. But the same microstructure properties do influence also the current velocity. In fact the current suitable for the Biot-Savart law should have a speed characteristic for a spinning electron particle and not that of a spinless electron circulating along the orbit of the original Bohr model.展开更多
The valence state of C atoms and the structure of molecular orbitals of the (Buckminster)Fullerene C_(60)have been demonstrated. It has been shown that when a motion-coordinate system is adopted, in which the coordina...The valence state of C atoms and the structure of molecular orbitals of the (Buckminster)Fullerene C_(60)have been demonstrated. It has been shown that when a motion-coordinate system is adopted, in which the coordinate origin is at every C atom, the z axis is in the direction of the normal and the (x,y) axes are in the direction of tangents of C_(60)'s spherical surface, 240 valence atomic orbitals of C_(60) can be divided into two groups. All (P_x, P_y)atomic orbitals named as Pt ones and all the other P_z atomic orbitals named as p. ones, That is to say that if we name the molecular orbital linearly combined of P_t atomic orbitals as σ_t and the molecular orbital linearly combined of P_n atomic orbitals as π_n, the 240 valence molecular orbitals are of the property of σ_t-π_n separability. It has also been shown that the frontier and nearby frontier molecular orbitals are π_n ones, and therefore the essential physical and chemical properties of C_(60) are determined by its π_n molecular orbitals.展开更多
In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600...In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600 W was launched into the circular cavity to generate ECR (electron cyclotron resonance) plasma. The oxygen ion beam moved onto a negatively biased Mo plate under the condition of symmetry magnetic mirror field confine, then was neutralized and reflected to form oxygen atom beam. The properties of plasma density, electron temperature, plasma space potential and ion incident energy were characterized. The atomic oxygen beam flux was calibrated by measuring the mass loss rate of Kapton during the atomic oxygen exposure. The test results show that the atomic oxygen beam with flux of 1016-1017 atoms-cm-2·s-1 and energy of 5-30 eV and a cross section of φ80 mm could be obtained under the operating pressure of 10-1-10-3 Pa. Such a high flux source can provide accelerated simulation tests of materials and coatings for space applications.展开更多
Due to outstanding mechanical properties, heat resistance, and relatively facile production,nanoclay reinforced epoxy composites(NCRE composites) have been suggested as candidate materials for use on external surfaces...Due to outstanding mechanical properties, heat resistance, and relatively facile production,nanoclay reinforced epoxy composites(NCRE composites) have been suggested as candidate materials for use on external surfaces of spacecraft residing in the low Earth orbit(LEO) environment. The resistance of the NCRE composites to bombardment by atomic oxygen(AO), a dominant component of the LEO environment, has been investigated. Four types of samples were used in this study. They were pure epoxy(0 wt% nanoclay content), and NCRE composites with different loadings of nanoclay—1 wt%, 2 wt%, and 4 wt%. Etch depths decreased with increasing nanoclay content, and for the 4 wt% samples it ranged from 28% to 37% compared to that of pure epoxy. X-ray photoelectron spectroscopy(XPS) indicates that after AO bombardment, relative area of C-C/C-H peak decreased,while the area of the C-O, ketones peaks increased, and the oxidation degree of surfaces increased. New carbon-related component carbonates were detected on nanoclay containing composite surfaces. Scanning electron microscopy indicates that aggregates formed on nanoclay-containing surfaces after AO bombardment. The sizes and densities of aggregates increased with nanoclay content. The combined erosion depths, XPS and SEM results indicate that although all the studied surfaces got eroded and oxidized after AO bombardment,the nanoclay containing composites showed better AO resistance compared to pure epoxy,because the produced aggregates on surface potentially act as a physical "shield", effectively retarding parts of the surface from further AO etching.展开更多
In order to investigate the effect of space environmental factors on spacecraft materials, a ground-based simulation facility for space atomic oxygen(AO) irradiation was developed in our laboratory. Some Kapton film...In order to investigate the effect of space environmental factors on spacecraft materials, a ground-based simulation facility for space atomic oxygen(AO) irradiation was developed in our laboratory. Some Kapton film samples were subjected to AO beam generated by this facility. The Kapton films before and after AO exposure were analyzed comparatively using optical microscopy, scanning electronic microscopy, atomic force microscopy, high-precision microbalance, and X-ray photoelectron spectroscopy. The experimental results indicate that the transmittance of Kapton film will be reduced by AO irradiation notably, and its color deepens from pale yellow to brown. Surface roughness of the AO-treated sample is already increased obviously after AO irradiation for 5 hours, and exhibits a flannel-like appearance after 15 hours’ exposure in AO beam. The imide rings and benzene rings in kapton molecule are partially decomposed, and some new bonds form during AO irradiation. The mass loss of kapton film increases linearly with the increase of AO fluence, which is resulted from the formation of volatile products, such as CO, CO2 and NOx. The breakage in structure and degradation in properties of AO-treated Kapton film can be attributed to the integrated effect ofimpaction and oxidization of AO beam. The test results agree well with the space flight experimental data.展开更多
We present a scheme for calculating atomic single-particle wave functions and spectra with taking into ac-count the nonspherical effect explicitly. The actual calculation is also performed for the neutral carbon atom ...We present a scheme for calculating atomic single-particle wave functions and spectra with taking into ac-count the nonspherical effect explicitly. The actual calculation is also performed for the neutral carbon atom within the Hartree-Fock-Slater approximation. As compared with the conventional atomic structure of the spherical approximation, the degenerate energy levels are split partially. The ground state values of the total orbital and spin angular momenta are estimated to be both about unity, which corresponds to the term P3PP in the LS-multiplet theory. This means that the nonspherical effect may play an essential role on the description of the magnetization caused by the orbital polarization.展开更多
We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonometh...We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.展开更多
We present a method for determining the motion of an electron in a hydrogen atom, which starts from a field Lagrangean foundation for non-conservative systems that can exhibit chaotic behavior. As a consequence, the p...We present a method for determining the motion of an electron in a hydrogen atom, which starts from a field Lagrangean foundation for non-conservative systems that can exhibit chaotic behavior. As a consequence, the problem of the formation of the atom becomes the problem of finding the possible stable orbital attractors and the associated transition paths through which the electron mechanical energy varies continuously until a stable energy state is reached.展开更多
文摘The electronic modulation characteristics of efficient metal phosphide electrocatalysts can be utilized to tune the performance of oxygen evolution reaction(OER).However,improving the overall water splitting performance remains a challenging task.By building metal organic framework(MOF)on MOF heterostructures,an efficient strategy for controlling the electrical structure of MOFs was presented in this study.ZIF-67 was in-situ synthesized on MIL-88(Fe)using a two-step self-assembly method,followed by low-temperature phosphorization to ultimately synthesize FeP-CoP_(3)bimetallic phosphides.By combining atomic orbital theory and theoretical calculations(density functional theory),the results reveal the successful modulation of electronic orbitals in FeP-CoP_(3)bimetallic phosphides,which are synthesized from MOF on MOF structure.The synergistic impact of the metal center Co species and the phase conjugation of both kinds of MOFs are responsible for this regulatory phenomenon.Therefore,the catalyst demonstrates excellent properties,demonstrating HER 81 mV(η10)in a 1.0 mol L^(−1)KOH solution and OER 239 mV(η50)low overpotentials.The FeP-CoP_(3)linked dual electrode alkaline batteries,which are bifunctional electrocatalysts,have a good electrocatalytic ability and may last for 50 h.They require just 1.49 V(η50)for total water breakdown.Through this technique,the electrical structure of electrocatalysts may be altered to increase catalytic activity.
基金supported by the National Natural Science Foundation of China(22234005,21974070)the Natural Science Foundation of Jiangsu Province(BK20222015)。
文摘Atomically dispersed catalysts exhibit significant influence on facilitating the sluggish oxygen reduction reaction(ORR)kinetics with high atom economy,owing to remarkable attributes including nearly 100%atomic utilization and exceptional catalytic functionality.Furthermore,accurately controlling atomic physical properties including spin,charge,orbital,and lattice degrees of atomically dispersed catalysts can realize the optimized chemical properties including maximum atom utilization efficiency,homogenous active centers,and satisfactory catalytic performance,but remains elusive.Here,through physical and chemical insight,we review and systematically summarize the strategies to optimize atomically dispersed ORR catalysts including adjusting the atomic coordination environment,adjacent electronic orbital and site density,and the choice of dual-atom sites.Then the emphasis is on the fundamental understanding of the correlation between the physical property and the catalytic behavior for atomically dispersed catalysts.Finally,an overview of the existing challenges and prospects to illustrate the current obstacles and potential opportunities for the advancement of atomically dispersed catalysts in the realm of electrocatalytic reactions is offered.
文摘In this paper, we have declined the formalism of the method of the Modified Atomic Orbital Theory (MAOT) applied to the calculations of energies of doubly excited states 2<em>snp</em>, 3<em>snp</em>, and 4<em>snp</em> Helium-like systems. Then we also applied the variational procedure of the Modified Atomic Orbital Theory to the computations of total energies, excitation energies of doubly-excited states 2<em>snp</em>, 3<em>snp</em>, 4<em>snp</em> types of Helium-like systems. The results obtained in this work are in good agreement with the experimental and theoretical values available.
文摘We report in this paper energy positions of the 2P˚_2s^(2)2p^(2)(^(1)D)nd 2P,2P˚_2s^(2)2p^(2)(^(1)D)nd 2S,2P˚_2s^(2)2p^(2)(^(1)D)ns^(2)D,2P˚_2s^(2)2p^(2)(^(1)S)nd ^(2)D,and 2P˚_2s^(2)2p^(3)(^(3)P)np ^(2)D Rydberg series in the photoionization spectra originating from 2P˚metastable state of O+ions.Calculations are performed up to n=30 using the Modified Orbital Atomic Theory(MAOT).The present results are compared to the experimental data of Aguilar which are the only available values.The accurate data presented in this work may be a useful guideline for future experimental and other theoretical studies.
文摘We report in this paper the ground-state energy 2s^(2)^(1)S and total energies of doubly excited states 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I of the Helium isoelectronic sequence from H-to Ca^(18+).Calculations are performed using the Modified Atomic Orbital Theory(MAOT)in the framework of a variational procedure.The purpose of this study required a mathematical development of the Hamiltonian applied to Slater-type wave function[1]combining with Hylleraas-type wave function[2].The study leads to analytical expressions which are carried out under special MAXIMA computational program.This first proposed MAOT variational procedure,leads to accurate results in good agreement as well as with available other theoretical results than experimental data.In the present work,a new correlated wave function is presented to express analytically the total energies for the 2s21S ground state and each doubly 2p^(2)^(1)D,3d^(2)^(1)D,4f^(2)^(1)I excited states in the He-like systems.The present accurate data may be a useful guideline for future experimental and theoretical studies in the(nI^(2))systems.
文摘The 2(1,0)n-1P°, 2(1,0)n +3P°, 2(0,1)n+1P°, and 2(0,1)n-3P° intershell Rydberg series of the helium-like ions are investigated in the framework of the modified Atomic Orbital Theory (MAOT). High-lying energy resonances of He and excitation energy of the he- lium-like Li+ up to n = 10 are tabulated. In addition, total energy positions for low-lying states (n1,3P° autoionizing states of two-electron systems.
文摘We consider the effect of a magnetic field on the motion of an atomic electron in its orbit. The usual treatment deals with the change in magnetic dipole moment assuming the electron's speed changes but the radius of its orbit remains unchanged. We derive the change in the magnetic dipole moment allowing both the speed and the radius to change. The cases of fixed radius on one hand and of fixed speed on the other are treated as special cases of our general case.
文摘Resonance energies of the Cl II-[3s23p3(2D5/2)]nd and [3s23p3(2P3/2)]nd, Ar II-3s23p4(1D2)ns, nd and of the Kr II [4s24p4(1D2)]ns, nd and 4s24p4(3P2,3P1)]ns, 4s24p4(3D2)]ns, nd and 4s24p4(3D2, 1S0)]ns, nd Rydberg series are reported. Natural widths of the Ar II-[3s23p4(1D2)]ns, nd series are also reported. Calculations are done in the framework of the Modified Atomic Orbital Theory (MAOT). Excellent agreements are obtained with available theoretical and experimental data. High lying accurate resonance energies up to n = 40 are tabulated. The possibility to use the MAOT formalism report rapidly with an excellent accuracy the position of the excitation resonances as well as their width within simple analytical formulae is demonstrated.
文摘We report in this paper energy positions of the 2D<sup>0</sup>_2s<sup>2</sup>2p<sup>2</sup>(<sup>1</sup>D)nd(<sup>2</sup>F);2D<sup>0</sup>_2s<sup>2</sup>2p<sup>2</sup>(<sup>1</sup>D)nd(<sup>2</sup>D);2D<sup>0</sup>_2s<sup>2</sup>2p<sup>2</sup>(<sup>1</sup>D)nd(<sup>2</sup>P);2D<sup>0</sup>_2s<sup>2</sup>2p<sup>2</sup>(<sup>1</sup>D)ns(<sup>2</sup>D);2D<sup>0</sup>_2s<sup>2</sup>2p<sup>3</sup>(<sup>3</sup>D)np(<sup>2</sup>P);2D<sup>0</sup>_2s<sup>2</sup>2p<sup>3</sup>(<sup>3</sup>D<sup>0</sup>)np(<sup>2</sup>F), and 4S<sup>0</sup>_2s<sup>2</sup>2p<sup>3</sup>(<sup>5</sup>S<sup>0</sup>)np(<sup>4</sup>P) Rydberg series in the photoionization spectra originating from 2D<sup>0</sup> and 4S<sup>0</sup> metastable states of O<sup>+</sup> ion. Calculations are performed up to n = 20 using the Modified Orbital Atomic Theory (MAOT) [1]. The present results are compared to the experimental data of Aguilar et al. [2] which are the only available values. The accurate data presented in this work may be a useful guideline for future experimental and other theoretical studies.
文摘Inspired by MXene nanosheets and their regulation of surface functional groups,a series of Ti_(2)C‐based single‐atom electrocatalysts(TM@Ti_(2)CT_(x),TM=V,Cr,Mn,Fe,Co,and Ni)with two dif‐ferent functional groups(T=–O and–S)was designed.The CO_(2)RR catalytic performance was stud‐ied using well‐defined ab initio calculations.Our results show that the CO_(2) molecule can be more readily activated on TM@Ti_(2)CO_(2) than the TM@Ti_(2)CS_(2) surface.Bader charge analysis reveals that the Ti_(2)CO_(2) substrate is involved in the adsorption reaction,and enough electrons are injected into the 2π*u orbital of CO_(2),leading to a V‐shaped CO_(2) molecular configuration and partial negative charge distribution.The V‐shaped CO_(2) further reduces the difficulty of the first hydrogenation reac‐tion step.The calculatedΔG of the first hydrogenation reaction on TM@Ti_(2)CO_(2) was significantly lower than that of the TM@Ti_(2)CS_(2) counterpart.However,the subsequent CO_(2) reduction pathways show that the UL of the potential determining step on TM@Ti_(2)CS_(2) is smaller than that of TM@Ti_(2)CO_(2).Combining the advantages of both TM@Ti_(2)CS_(2) and TM@Ti_(2)CO_(2),we designed a mixed functional group surface with–O and–S to anchor TM atoms.The results show that Cr atoms an‐chored on the surface of mixed functional groups exhibit high catalytic activity for the selective production of CH4.This study opens an exciting new avenue for the rational design of highly selec‐tive MXene‐based single‐atom CO_(2)RR electrocatalysts.
文摘The nitrogen reduction reaction(NRR)under ambient conditions is still challenging due to the inertness of N2.Herein,we report a series of superior NRR catalysts identified by examining Ti2NO2 MXenes embedded with 28 different single-atom catalysts using first-principles calculations.The stability of this system was first verified using formation energies,and it is discovered that N2 can be effectively adsorbed due to the synergistic effect between single atom catalysis and the Ti atoms.Examination of the electronic structure demonstrated that this design satisfies orbital symmetry matching where“acceptor-donor”interaction scenario can be realized.A new“enzymatic-distal”reaction mechanism that is a mixture of the enzymatic and distal pathways was also discovered.Among all of the candidates,Ni anchored on MXene system achieves an onset potential as low as–0.13 V,which to the best of our knowledge is the lowest onset potential value reported to date.This work elucidates the significance of orbital symmetry matching and provides theoretical guidance for future studies.
文摘Electrodynamics of the one-electron currents due to the circular orbital motion of the electron particle in the hydrogen atom has been examined. The motion is assumed to be induced by the time change of the magnetic field in the atom. A characteristic point is that the electric resistance calculated for the motion is independent of the orbit index and its size is similar to that obtained earlier experimentally for the planar free-electron-like structures considered in the integer quantum Hall effect. Other current parameters like conductivity and the relaxation time behave in a way similar to that being typical for metals. A special attention was attached to the relations between the current intensity and magnetic field. A correct reproduction of this field with the aid of the Biot-Savart law became possible when the geometrical microstructure of the electron particle has been explicitly taken into account. But the same microstructure properties do influence also the current velocity. In fact the current suitable for the Biot-Savart law should have a speed characteristic for a spinning electron particle and not that of a spinless electron circulating along the orbit of the original Bohr model.
文摘The valence state of C atoms and the structure of molecular orbitals of the (Buckminster)Fullerene C_(60)have been demonstrated. It has been shown that when a motion-coordinate system is adopted, in which the coordinate origin is at every C atom, the z axis is in the direction of the normal and the (x,y) axes are in the direction of tangents of C_(60)'s spherical surface, 240 valence atomic orbitals of C_(60) can be divided into two groups. All (P_x, P_y)atomic orbitals named as Pt ones and all the other P_z atomic orbitals named as p. ones, That is to say that if we name the molecular orbital linearly combined of P_t atomic orbitals as σ_t and the molecular orbital linearly combined of P_n atomic orbitals as π_n, the 240 valence molecular orbitals are of the property of σ_t-π_n separability. It has also been shown that the frontier and nearby frontier molecular orbitals are π_n ones, and therefore the essential physical and chemical properties of C_(60) are determined by its π_n molecular orbitals.
基金This work was supported by the National Key Basic Research and.Development Program of China(No.G19990650).
文摘In order to study the atomic oxygen corrosion of spacecraft materials in low earth orbit environment, an atomic oxygen simulator was established. In the simulator, a 2.45 GHz microwave source with maximum power of 600 W was launched into the circular cavity to generate ECR (electron cyclotron resonance) plasma. The oxygen ion beam moved onto a negatively biased Mo plate under the condition of symmetry magnetic mirror field confine, then was neutralized and reflected to form oxygen atom beam. The properties of plasma density, electron temperature, plasma space potential and ion incident energy were characterized. The atomic oxygen beam flux was calibrated by measuring the mass loss rate of Kapton during the atomic oxygen exposure. The test results show that the atomic oxygen beam with flux of 1016-1017 atoms-cm-2·s-1 and energy of 5-30 eV and a cross section of φ80 mm could be obtained under the operating pressure of 10-1-10-3 Pa. Such a high flux source can provide accelerated simulation tests of materials and coatings for space applications.
基金the National Natu- ral Science Foundation of China (No.21473015 and No.41574101)the Fundamental Research Funds for the Central Universities (No.3132018233).
文摘Due to outstanding mechanical properties, heat resistance, and relatively facile production,nanoclay reinforced epoxy composites(NCRE composites) have been suggested as candidate materials for use on external surfaces of spacecraft residing in the low Earth orbit(LEO) environment. The resistance of the NCRE composites to bombardment by atomic oxygen(AO), a dominant component of the LEO environment, has been investigated. Four types of samples were used in this study. They were pure epoxy(0 wt% nanoclay content), and NCRE composites with different loadings of nanoclay—1 wt%, 2 wt%, and 4 wt%. Etch depths decreased with increasing nanoclay content, and for the 4 wt% samples it ranged from 28% to 37% compared to that of pure epoxy. X-ray photoelectron spectroscopy(XPS) indicates that after AO bombardment, relative area of C-C/C-H peak decreased,while the area of the C-O, ketones peaks increased, and the oxidation degree of surfaces increased. New carbon-related component carbonates were detected on nanoclay containing composite surfaces. Scanning electron microscopy indicates that aggregates formed on nanoclay-containing surfaces after AO bombardment. The sizes and densities of aggregates increased with nanoclay content. The combined erosion depths, XPS and SEM results indicate that although all the studied surfaces got eroded and oxidized after AO bombardment,the nanoclay containing composites showed better AO resistance compared to pure epoxy,because the produced aggregates on surface potentially act as a physical "shield", effectively retarding parts of the surface from further AO etching.
基金Funded by the Distinguished Young Scholars of NSFC(51125023)the Major State Basic Research Development Programof China(2011CB013405)the Natural Science Foundation of Beijing City(3120001)
文摘In order to investigate the effect of space environmental factors on spacecraft materials, a ground-based simulation facility for space atomic oxygen(AO) irradiation was developed in our laboratory. Some Kapton film samples were subjected to AO beam generated by this facility. The Kapton films before and after AO exposure were analyzed comparatively using optical microscopy, scanning electronic microscopy, atomic force microscopy, high-precision microbalance, and X-ray photoelectron spectroscopy. The experimental results indicate that the transmittance of Kapton film will be reduced by AO irradiation notably, and its color deepens from pale yellow to brown. Surface roughness of the AO-treated sample is already increased obviously after AO irradiation for 5 hours, and exhibits a flannel-like appearance after 15 hours’ exposure in AO beam. The imide rings and benzene rings in kapton molecule are partially decomposed, and some new bonds form during AO irradiation. The mass loss of kapton film increases linearly with the increase of AO fluence, which is resulted from the formation of volatile products, such as CO, CO2 and NOx. The breakage in structure and degradation in properties of AO-treated Kapton film can be attributed to the integrated effect ofimpaction and oxidization of AO beam. The test results agree well with the space flight experimental data.
文摘We present a scheme for calculating atomic single-particle wave functions and spectra with taking into ac-count the nonspherical effect explicitly. The actual calculation is also performed for the neutral carbon atom within the Hartree-Fock-Slater approximation. As compared with the conventional atomic structure of the spherical approximation, the degenerate energy levels are split partially. The ground state values of the total orbital and spin angular momenta are estimated to be both about unity, which corresponds to the term P3PP in the LS-multiplet theory. This means that the nonspherical effect may play an essential role on the description of the magnetization caused by the orbital polarization.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11574115 and 11704146)
文摘We theoretically investigate the excited state intramolecular proton transfer(ESIPT) behavior of the novel fluorophore bis-imine derivative molecule HNP which was designed based on the intersection of 1-(hydrazonomethyl)-naphthalene-2-ol and 1-pyrenecarboxaldehyde. Especially, the density functional theory(DFT) and time-dependent density functional theory(TDDFT) methods for HNP monomer are introduced. Moreover, the "our own n-layered integrated molecular orbital and molecular mechanics"(ONIOM) method(TDDFT:universal force field(UFF)) is used to reveal the aggregation-induced emission(AIE) effect on the ESIPT process for HNP in crystal. Our results confirm that the ESIPT process happens upon the photoexcitation for the HNP monomer and HNP in crystal, which is distinctly monitored by the optimized geometric structures and the potential energy curves. In addition, the results of potential energy curves reveal that the ESIPT process in HNP will be promoted by the AIE effect. Furthermore, the highest occupied molecular orbital(HOMO) and lowest unoccupied molecular orbital(LUMO) for the HNP monomer and HNP in crystal have been calculated. The calculation demonstrates that the electron density decrease of proton donor caused by excitation promotes the ESIPT process. In addition, we find that the variation of atomic dipole moment corrected Hirshfeld population(ADCH) charge for proton acceptor induced by the AIE effect facilitates the ESIPT process. The results will be expected to deepen the understanding of ESIPT dynamics for luminophore under the AIE effect and provide insight into future design of high-efficient AIE compounds.
文摘We present a method for determining the motion of an electron in a hydrogen atom, which starts from a field Lagrangean foundation for non-conservative systems that can exhibit chaotic behavior. As a consequence, the problem of the formation of the atom becomes the problem of finding the possible stable orbital attractors and the associated transition paths through which the electron mechanical energy varies continuously until a stable energy state is reached.