It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted t...It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted that general quintic equations had no radical solutions. However, Tang Jianer <i><span style="font-family:Verdana;font-size:12px;">et</span></i><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> recently prove that there are radical solutions for some quintic equations with special forms. The theories of Abel and Galois cannot explain these results. On the other hand, Gauss </span><i><span style="font-family:Verdana;font-size:12px;">et</span></i></span><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> proved the fundamental theorem of algebra. The theorem declared that there were </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> solutions for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree equations, including the radical and non-radical solutions. The theories of Abel and Galois contradicted with the fundamental theorem of algebra. Due to the reasons above, the proofs of Abel and Galois should be re-examined and re-evaluated. The author carefully analyzed the Abel’s original paper and found some serious mistakes. In order to prove that the general solution of algebraic equation</span></span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">he proposed was effective for the cubic equation, Abel took the known solutions of cubic equation as a premise to calculate the parameters of his equation. Therefore, Abel’s proof is a logical circular argument and invalid. Besides, Abel confused the variables with the coefficients (constants) of algebraic equations. An expansion with 14 terms was written as 7 terms, 7 terms were missing.</span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">We prefer to consider Galois’s theory as a hypothesis rather than a proof. Based on that permutation group </span><i><span style="font-size:12px;font-family:Verdana;">S</span></i><sub><span style="font-size:12px;font-family:Verdana;">5</span></sub><span style="font-size:12px;font-family:Verdana;"> had no true normal subgroup, Galois concluded that the quintic equations had no radical solutions, but these two problems had no inevitable logic connection actually. In order to prove the effectiveness of radical extension group of automorphism mapping for the cubic and quartic equations, in the Galois’s theory, some algebraic relations among the roots of equations were used to replace the root itself. This violated the original definition of automorphism mapping group, led to the confusion of concepts and arbitrariness. For the general cubic and quartic algebraic equations, the actual solving processes do not satisfy the tower structure of Galois’s solvable group. The resolvents of cubic and quartic equations are proved to have no symmetries of Galois’s soluble group actually. It is invalid to use the solvable group theory to judge whether the high degree equation has a radical solution. The conclusion of this paper is that there is only the </span><i><span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;">S</span><sub><span style="font-family:Verdana;font-size:12px;">n</span></sub></span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> symmetry for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree algebraic equations. The symmetry of Galois’s solvable group does not exist. Mathematicians should get rid of the constraints of Abel and Galois’s theories, keep looking for the radical solutions of high degree equations.</span></span>展开更多
文摘It is proved in this paper that Abel’s and Galois’s proofs that the quintic equations have no radical solutions are invalid. Due to Abel’s and Galois’s work about two hundred years ago, it was generally accepted that general quintic equations had no radical solutions. However, Tang Jianer <i><span style="font-family:Verdana;font-size:12px;">et</span></i><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> recently prove that there are radical solutions for some quintic equations with special forms. The theories of Abel and Galois cannot explain these results. On the other hand, Gauss </span><i><span style="font-family:Verdana;font-size:12px;">et</span></i></span><i><span style="font-size:12px;font-family:Verdana;"> al</span><span style="font-size:12px;font-family:Verdana;">.</span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> proved the fundamental theorem of algebra. The theorem declared that there were </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> solutions for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree equations, including the radical and non-radical solutions. The theories of Abel and Galois contradicted with the fundamental theorem of algebra. Due to the reasons above, the proofs of Abel and Galois should be re-examined and re-evaluated. The author carefully analyzed the Abel’s original paper and found some serious mistakes. In order to prove that the general solution of algebraic equation</span></span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">he proposed was effective for the cubic equation, Abel took the known solutions of cubic equation as a premise to calculate the parameters of his equation. Therefore, Abel’s proof is a logical circular argument and invalid. Besides, Abel confused the variables with the coefficients (constants) of algebraic equations. An expansion with 14 terms was written as 7 terms, 7 terms were missing.</span><span style="font-size:10pt;font-family:;" "=""> </span><span style="font-size:12px;font-family:Verdana;">We prefer to consider Galois’s theory as a hypothesis rather than a proof. Based on that permutation group </span><i><span style="font-size:12px;font-family:Verdana;">S</span></i><sub><span style="font-size:12px;font-family:Verdana;">5</span></sub><span style="font-size:12px;font-family:Verdana;"> had no true normal subgroup, Galois concluded that the quintic equations had no radical solutions, but these two problems had no inevitable logic connection actually. In order to prove the effectiveness of radical extension group of automorphism mapping for the cubic and quartic equations, in the Galois’s theory, some algebraic relations among the roots of equations were used to replace the root itself. This violated the original definition of automorphism mapping group, led to the confusion of concepts and arbitrariness. For the general cubic and quartic algebraic equations, the actual solving processes do not satisfy the tower structure of Galois’s solvable group. The resolvents of cubic and quartic equations are proved to have no symmetries of Galois’s soluble group actually. It is invalid to use the solvable group theory to judge whether the high degree equation has a radical solution. The conclusion of this paper is that there is only the </span><i><span style="font-size:10.0pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;">S</span><sub><span style="font-family:Verdana;font-size:12px;">n</span></sub></span></i><span style="font-size:10pt;font-family:;" "=""><span style="font-family:Verdana;font-size:12px;"> symmetry for the </span><i><span style="font-family:Verdana;font-size:12px;">n</span></i><span style="font-family:Verdana;font-size:12px;"> degree algebraic equations. The symmetry of Galois’s solvable group does not exist. Mathematicians should get rid of the constraints of Abel and Galois’s theories, keep looking for the radical solutions of high degree equations.</span></span>