Based on the propagation equation of higher-order intensity moments, analytical propagation expressions for the kurtosis parameters of a super Lorentz-Gauss (SLG) SLG01 beam through a paraxial and real ABCD optical ...Based on the propagation equation of higher-order intensity moments, analytical propagation expressions for the kurtosis parameters of a super Lorentz-Gauss (SLG) SLG01 beam through a paraxial and real ABCD optical system are derived. By replacing the parameters in the expressions of the kurtosis parameters of the SLC01 beam, the kurtosis parameters of the SLG10 and SLGll beams through a paraxial and real ABCD optical system can be easily obtained. The kurtosis parameters of an SLG01 beam through a paraxial and real ABCD optical system depend on two ratios. One is the ratio of the transfer matrix element B to the product of the transfer matrix element A and the diffraction-free range of the super-Lorentzian part. The other is the ratio of the width parameter of the super-Lorentzian part to the waist of the Gaussian part. As a numerical example, the properties of the kurtosis parameters of an SLG01 beam propagating in free space are illustrated. The influences of different parameters on the kurtosis parameters of an SLG01 beam are analysed in detail.展开更多
The concept of partially coherent nonparaxial modified Bessel Gauss (MBG) beams is proposed. Based on the generalized Rayleigh-Sommerfeld diffraction integral, the analytical propagation equations of nonparaxial MBG...The concept of partially coherent nonparaxial modified Bessel Gauss (MBG) beams is proposed. Based on the generalized Rayleigh-Sommerfeld diffraction integral, the analytical propagation equations of nonparaxial MBG beams in free space are derived and analysed, and some special cases are discussed. In particular, under the paraxial approximation our results reduce to the corresponding paraxial ones. Numerical calculation examples are given to illustrate the dependence of intensity and spectral degree of coherence on the beam order m, ζ and f parameters, and to compare the difference between the paraxial and nonparaxial results.展开更多
Optical tweezers play an important role in many domains, especially in life science. And optical gradient force is necessary for constructing optical tweezers. In this paper, the optical gradient force in the focal re...Optical tweezers play an important role in many domains, especially in life science. And optical gradient force is necessary for constructing optical tweezers. In this paper, the optical gradient force in the focal region of radial varying polarization Bessel- Gauss beam is investigated numerically by means of vector diffraction theory. Results show that the beam parameter and vary rate parameter that indicates the change speed of polarization rotation angle affect the optical gradient force pattern very considerably, and some novel force distributions may come into being, such as multiple force minimums, force ring, and force crust. Therefore, the focusing of radial varying polarization Bessel-Gauss beam can be used to construct optical traps.展开更多
The recent introduction by Belafhal et al. [Opt. and Photon. J. 5, 234-246 (2015)] of mth-order Olver beams as a novel class of self-accelerating nondiffracting solutions to the paraxial equation is a direct contradic...The recent introduction by Belafhal et al. [Opt. and Photon. J. 5, 234-246 (2015)] of mth-order Olver beams as a novel class of self-accelerating nondiffracting solutions to the paraxial equation is a direct contradiction to the seminal work of Berry and Balazs who determined that the infinite-energy Airy wave packet is the only accelerating nondiffracting solution to the (1 + 1)D Schrödinger equation. It is shown in this note that the work of Belafhal et al. is valid only for m=0, which coincides with the Airy solution.展开更多
The Mathieu beam is a typical nondiffracting beam characterized by its propagation invariance and self-reconstruction.These extraordinary properties have given rise to potentialities for applications such as optical c...The Mathieu beam is a typical nondiffracting beam characterized by its propagation invariance and self-reconstruction.These extraordinary properties have given rise to potentialities for applications such as optical communications,optical trapping,and material processing.However,the experimental generation of Mathieu–Gauss beams possessing high quality and compactness is still challenging.In this work,even and helical Mathieu phase plates with different orders m and ellipticity parameters q are fabricated by femtosecond laser two-photon polymerization.The experimentally generated nondiffracting beams are propagationinvariant in several hundred millimeters,which agree with numerical simulations.This work may promote the miniaturization of the application of nondiffracting beams in micronanooptics.展开更多
Based on the vectorial Rayleigh-Sommerfeld integral formulae, this paper derives the analytical nonparaxial propagation equation of a super-Lorentz-Gauss (SLG) SLGo1 mode beam in free space. The far field expression...Based on the vectorial Rayleigh-Sommerfeld integral formulae, this paper derives the analytical nonparaxial propagation equation of a super-Lorentz-Gauss (SLG) SLGo1 mode beam in free space. The far field expression and the scalar paraxial result are treated with special cases of the general formulae. According to the obtained analytical representation, the nonparaxial propagation properties of the SLG01 mode beam are illustrated and analysed with numerical examples. This research provides an approach to investigate the propagation of the SLG01 mode beam within the framework of the nonparaxial regime.展开更多
An orthonormal beam family of super Lorentz-Gauss (SLG) beam model is proposed to describe the higher-order mode beams with high divergence, which are generated by a high power diode laser. Here we consider the simp...An orthonormal beam family of super Lorentz-Gauss (SLG) beam model is proposed to describe the higher-order mode beams with high divergence, which are generated by a high power diode laser. Here we consider the simplest case of the SLG beams, where there are four mutually orthogonal SLG beams, namely SLG00, SLG01, SLG10, and SLGll beams. The SLG00 beam is just the Lorentz-Gauss beam. Based on the Collins integral formula and the Hermite-Gaussian expansion of a Lorentz function, an analytical expression for the Wigner distribution function (WDF) of an SLG11 beam through a paraxial ABCD optical system is derived. The properties of the WDF of an SLG11 beam propagating in free space are demonstrated. The normalized WDFs of an SLG11 beam at the different spatial points are depicted in several observation planes. The influence of the beam parameter on the WDF of an SLGI 1 beam in free space is analyzed at different propagation distances. The second-order moments of the WDF of an SLG11 beam in free space are also examined. This research reveals the propagation properties of an SLGll beam from another perspective. The WDFs of SLG01 and SLG10 beams can be easily obtained by using the WDFs of Lorentz-Gauss beam and the SLG11 beam.展开更多
This paper studies the propagation properties of Gauss-Bessel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagati...This paper studies the propagation properties of Gauss-Bessel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagating in a turbulent atmosphere. Then the influence of turbulence and source beam parameters on the beam propagation is studied in great detail. It finds that the intensity distribution of Gauss-Bessel beams will change into Gaussian profile in a turbulent atmosphere, and that stronger turbulence and smaller topological charges will lead to a faster changing.展开更多
Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge ...Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge passing through a single slit is derived. By using the obtained analytical expressions, the properties of the Lorentz–Gauss vortex beam passing through a single slit are numerically demonstrated. According to the intensity distribution or the phase distribution of the Lorentz–Gauss vortex beam, one can judge whether the topological charge is positive or negative. The effects of the topological charge and three beam parameters on the orbital angular momentum density as well as the spiral spectra are systematically investigated respectively. The optimal choice for measuring the topological charge of the diffracted Lorentz–Gauss vortex beam is to make the single slit width wider than the waist of the Gaussian part.展开更多
This paper studies the Kapchinsky-Vladimirsky (K-V) beam through a triangle periodic-focusing magnetic field by using the particle-core model. The beam halo-chaos is found, and an idea of Gauss function controller i...This paper studies the Kapchinsky-Vladimirsky (K-V) beam through a triangle periodic-focusing magnetic field by using the particle-core model. The beam halo-chaos is found, and an idea of Gauss function controller is proposed based on the strategy of controlling the halo-chaos. It performs multiparticle simulation to control the halo by using the Gauss function control method. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively, and that the radial particle density is uniform at the centre of the beam as long as the control method and appropriate parameter are chosen.展开更多
A beam propagation method based on the Galerkin method with Hermite-Gauss basis functions for studying optical field propagation in weakly guiding dielectric structures is described. The selected basis functions natur...A beam propagation method based on the Galerkin method with Hermite-Gauss basis functions for studying optical field propagation in weakly guiding dielectric structures is described. The selected basis functions naturally satisfy the required boundary conditions at infinity so that the boundary truncation is avoided. The paraxial propagation equation is converted into a set of first-order ordinary differential equations, which are solved by means of standard numerical library routines. Besides, the calculation is efficient due to its small resulted matrix. The evolution of the injected field and its normalized power along the propagation distance in an asymmetric slab waveguide and directional coupler are presented, and the solutions are good agreement with those obtained by finite difference BPM, which tests the validity of the present approach.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.10974179)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y1090073)
文摘Based on the propagation equation of higher-order intensity moments, analytical propagation expressions for the kurtosis parameters of a super Lorentz-Gauss (SLG) SLG01 beam through a paraxial and real ABCD optical system are derived. By replacing the parameters in the expressions of the kurtosis parameters of the SLC01 beam, the kurtosis parameters of the SLG10 and SLGll beams through a paraxial and real ABCD optical system can be easily obtained. The kurtosis parameters of an SLG01 beam through a paraxial and real ABCD optical system depend on two ratios. One is the ratio of the transfer matrix element B to the product of the transfer matrix element A and the diffraction-free range of the super-Lorentzian part. The other is the ratio of the width parameter of the super-Lorentzian part to the waist of the Gaussian part. As a numerical example, the properties of the kurtosis parameters of an SLG01 beam propagating in free space are illustrated. The influences of different parameters on the kurtosis parameters of an SLG01 beam are analysed in detail.
基金Project supported by the National High Technology Development Program of China (Grant No 823070) and the National Natural Science Foundation of China (Grant No 10574097).
文摘The concept of partially coherent nonparaxial modified Bessel Gauss (MBG) beams is proposed. Based on the generalized Rayleigh-Sommerfeld diffraction integral, the analytical propagation equations of nonparaxial MBG beams in free space are derived and analysed, and some special cases are discussed. In particular, under the paraxial approximation our results reduce to the corresponding paraxial ones. Numerical calculation examples are given to illustrate the dependence of intensity and spectral degree of coherence on the beam order m, ζ and f parameters, and to compare the difference between the paraxial and nonparaxial results.
文摘Optical tweezers play an important role in many domains, especially in life science. And optical gradient force is necessary for constructing optical tweezers. In this paper, the optical gradient force in the focal region of radial varying polarization Bessel- Gauss beam is investigated numerically by means of vector diffraction theory. Results show that the beam parameter and vary rate parameter that indicates the change speed of polarization rotation angle affect the optical gradient force pattern very considerably, and some novel force distributions may come into being, such as multiple force minimums, force ring, and force crust. Therefore, the focusing of radial varying polarization Bessel-Gauss beam can be used to construct optical traps.
文摘The recent introduction by Belafhal et al. [Opt. and Photon. J. 5, 234-246 (2015)] of mth-order Olver beams as a novel class of self-accelerating nondiffracting solutions to the paraxial equation is a direct contradiction to the seminal work of Berry and Balazs who determined that the infinite-energy Airy wave packet is the only accelerating nondiffracting solution to the (1 + 1)D Schrödinger equation. It is shown in this note that the work of Belafhal et al. is valid only for m=0, which coincides with the Airy solution.
基金supported by the National Natural Science Foundation of China(Grant Nos.62125503 and 62261160388)the Key R&D Program of Hubei Province of China(Grant Nos.2020BAB001 and 2021BAA024)+3 种基金the Key R&D Program of Guangdong Province(Grant No.2018B030325002)the Science and Technology Innovation Commission of Shenzhen(Grant No.JCYJ20200109114018750)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2021BG004)the Fundamental Research Funds for the Central Universities(Grant No.2019kfyRCPY037).
文摘The Mathieu beam is a typical nondiffracting beam characterized by its propagation invariance and self-reconstruction.These extraordinary properties have given rise to potentialities for applications such as optical communications,optical trapping,and material processing.However,the experimental generation of Mathieu–Gauss beams possessing high quality and compactness is still challenging.In this work,even and helical Mathieu phase plates with different orders m and ellipticity parameters q are fabricated by femtosecond laser two-photon polymerization.The experimentally generated nondiffracting beams are propagationinvariant in several hundred millimeters,which agree with numerical simulations.This work may promote the miniaturization of the application of nondiffracting beams in micronanooptics.
基金Project supported by the National Natural Science Foundation of China (Grant No.10974179)the Natural Science Foundation of Zhejiang Province of China (Grant No.Y1090073)
文摘Based on the vectorial Rayleigh-Sommerfeld integral formulae, this paper derives the analytical nonparaxial propagation equation of a super-Lorentz-Gauss (SLG) SLGo1 mode beam in free space. The far field expression and the scalar paraxial result are treated with special cases of the general formulae. According to the obtained analytical representation, the nonparaxial propagation properties of the SLG01 mode beam are illustrated and analysed with numerical examples. This research provides an approach to investigate the propagation of the SLG01 mode beam within the framework of the nonparaxial regime.
基金Project supported by the National Natural Science Foundation of China (Grant No.10974179)the Natural Science Foundation of Zhejiang Province,China(Grant No.Y1090073)
文摘An orthonormal beam family of super Lorentz-Gauss (SLG) beam model is proposed to describe the higher-order mode beams with high divergence, which are generated by a high power diode laser. Here we consider the simplest case of the SLG beams, where there are four mutually orthogonal SLG beams, namely SLG00, SLG01, SLG10, and SLGll beams. The SLG00 beam is just the Lorentz-Gauss beam. Based on the Collins integral formula and the Hermite-Gaussian expansion of a Lorentz function, an analytical expression for the Wigner distribution function (WDF) of an SLG11 beam through a paraxial ABCD optical system is derived. The properties of the WDF of an SLG11 beam propagating in free space are demonstrated. The normalized WDFs of an SLG11 beam at the different spatial points are depicted in several observation planes. The influence of the beam parameter on the WDF of an SLGI 1 beam in free space is analyzed at different propagation distances. The second-order moments of the WDF of an SLG11 beam in free space are also examined. This research reveals the propagation properties of an SLGll beam from another perspective. The WDFs of SLG01 and SLG10 beams can be easily obtained by using the WDFs of Lorentz-Gauss beam and the SLG11 beam.
基金supported by National Natural Science Foundation of China (Grant No 60477041)Key Project of Science and Technology of Fujian Province of China (Grant No 2007H0027)
文摘This paper studies the propagation properties of Gauss-Bessel beams in a turbulent atmosphere. Based on the extended Huygens-Fresnel principle, it derives the intensity distribution expression for such beams propagating in a turbulent atmosphere. Then the influence of turbulence and source beam parameters on the beam propagation is studied in great detail. It finds that the intensity distribution of Gauss-Bessel beams will change into Gaussian profile in a turbulent atmosphere, and that stronger turbulence and smaller topological charges will lead to a faster changing.
基金Project supported by the National Natural Science Foundation of China(Grant No.11574272)Zhejiang Provincial Natural Science Foundation of China(Grant No.LY16A040014)
文摘Based on the Hermite–Gaussian expansion of the Lorentz distribution and the complex Gaussian expansion of the aperture function, an analytical expression of the Lorentz–Gauss vortex beam with one topological charge passing through a single slit is derived. By using the obtained analytical expressions, the properties of the Lorentz–Gauss vortex beam passing through a single slit are numerically demonstrated. According to the intensity distribution or the phase distribution of the Lorentz–Gauss vortex beam, one can judge whether the topological charge is positive or negative. The effects of the topological charge and three beam parameters on the orbital angular momentum density as well as the spiral spectra are systematically investigated respectively. The optimal choice for measuring the topological charge of the diffracted Lorentz–Gauss vortex beam is to make the single slit width wider than the waist of the Gaussian part.
基金supported by the National Natural Science Foundation of China (Grant No 10247005)the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No KJ2007B187)the Scientific Research Foundation of China University of Mining and Technology for the Young (Grant No OK060119)
文摘This paper studies the Kapchinsky-Vladimirsky (K-V) beam through a triangle periodic-focusing magnetic field by using the particle-core model. The beam halo-chaos is found, and an idea of Gauss function controller is proposed based on the strategy of controlling the halo-chaos. It performs multiparticle simulation to control the halo by using the Gauss function control method. The numerical results show that the halo-chaos and its regeneration can be eliminated effectively, and that the radial particle density is uniform at the centre of the beam as long as the control method and appropriate parameter are chosen.
文摘A beam propagation method based on the Galerkin method with Hermite-Gauss basis functions for studying optical field propagation in weakly guiding dielectric structures is described. The selected basis functions naturally satisfy the required boundary conditions at infinity so that the boundary truncation is avoided. The paraxial propagation equation is converted into a set of first-order ordinary differential equations, which are solved by means of standard numerical library routines. Besides, the calculation is efficient due to its small resulted matrix. The evolution of the injected field and its normalized power along the propagation distance in an asymmetric slab waveguide and directional coupler are presented, and the solutions are good agreement with those obtained by finite difference BPM, which tests the validity of the present approach.