We offer an intrinsic theoretical framework to reveal the inner relationships among three theories for Euler characteristic number, including Gauss Bonnet-Chern theorem, Hop-Poincaré theorem and Morse theory. Mor...We offer an intrinsic theoretical framework to reveal the inner relationships among three theories for Euler characteristic number, including Gauss Bonnet-Chern theorem, Hop-Poincaré theorem and Morse theory. Moreover, we consider the Gauss Bonnet-Chern (GBC) form imbedded in arbitrary higher-dimensional manifold, which suggests a Hodge dual tensor current. We show the brane structure inherent in the GBC tensor current and obtain the generalized Nambu action for the multi branes with quantized topological charge.展开更多
This is a survey about our recent works on the Gauss-Bonnet-Chern (GBC) mass for asymptotically flat and asymptotically hyperbolic manifolds. We first introduce the GBC mass, a higher order mass, for asymptotically ...This is a survey about our recent works on the Gauss-Bonnet-Chern (GBC) mass for asymptotically flat and asymptotically hyperbolic manifolds. We first introduce the GBC mass, a higher order mass, for asymptotically flat and for asymptotically hyperbolic manifolds, respectively, by using a higher order scalar curvature. Then we prove its positivity and the Penrose inequality for graphical manifolds. One of the crucial steps in the proof of the Penrose inequality is the use of an Alexandrov-Fenchel inequality, which is a classical^inequality in the Euclidean space. In the hyperbolic space, we have established this new Alexandrov-Fenchel inequality. We also have a similar work for asymptotically locally hyperbolic manifolds. At the end, we discuss the relation between the GBC mass and Chern's magic form.展开更多
基金The project supported in part by National Natural Science Foundation of China under Grant No. 10175028, the TianYuan Mathematics Fund under Grant No. A0324661, the China Postdoctoral Science Foundation and the Doctoral Foundation of China
文摘We offer an intrinsic theoretical framework to reveal the inner relationships among three theories for Euler characteristic number, including Gauss Bonnet-Chern theorem, Hop-Poincaré theorem and Morse theory. Moreover, we consider the Gauss Bonnet-Chern (GBC) form imbedded in arbitrary higher-dimensional manifold, which suggests a Hodge dual tensor current. We show the brane structure inherent in the GBC tensor current and obtain the generalized Nambu action for the multi branes with quantized topological charge.
基金Acknowledgements The most part of this survey was talked in the conference "Metric Riemannian Geometry Workshop" held in Shanghai Jiao Tong University, Shanghai, China. The authors would like to take this opportunity to thank the organizers both from China and from Germany. This work was partly supported by SFB/TR71 "Geometric partial differential equations" of DFG. JW was supported by the National Natural Science Foundation of China (Grant No. 11401553) and CX in part by the Fundamental Research Funds for the Central Universities (Grant No. 20720150012) and the National Natural Science Foundation of China (Grant No. 11501480).
文摘This is a survey about our recent works on the Gauss-Bonnet-Chern (GBC) mass for asymptotically flat and asymptotically hyperbolic manifolds. We first introduce the GBC mass, a higher order mass, for asymptotically flat and for asymptotically hyperbolic manifolds, respectively, by using a higher order scalar curvature. Then we prove its positivity and the Penrose inequality for graphical manifolds. One of the crucial steps in the proof of the Penrose inequality is the use of an Alexandrov-Fenchel inequality, which is a classical^inequality in the Euclidean space. In the hyperbolic space, we have established this new Alexandrov-Fenchel inequality. We also have a similar work for asymptotically locally hyperbolic manifolds. At the end, we discuss the relation between the GBC mass and Chern's magic form.