Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X...Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.展开更多
We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach.An expression is derived for the radiation force on a multilayered spher...We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach.An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid,The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed,with particular emphasis on the shell thickness of every layer,and the width of the Gaussian beam.The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka,as well as the shell thickness of each layer.This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave,which may benefit the improvement and development of acoustic control technology,such as trapping,sorting,and assembling a cell,and drug delivery applications.展开更多
Acoustic manipulation is one of the well-known technologies of particle control and a top research in acoustic field.Calculation of acoustic radiation force on a particle nearby boundaries is one of the critical tasks...Acoustic manipulation is one of the well-known technologies of particle control and a top research in acoustic field.Calculation of acoustic radiation force on a particle nearby boundaries is one of the critical tasks,as it approximates realistic applications.Nevertheless,it is quite difficult to solve the problem by theoretical method when the boundary conditions are intricate.In this study,we present a finite element method numerical model for the acoustic radiation force exerting on a rigid cylindrical particle immersed in fluid near a rigid corner.The effects of the boundaries on acoustic radiation force of a rigid cylinder are analyzed with particular emphasis on the non-dimensional frequency and the distance from the center of cylinder to each boundary.The results reveal that these parameters play important roles in acoustic manipulation for particle-nearby complicated rigid boundaries.This study verifies the feasibility of numerical analysis on the issue of acoustic radiation force calculation close to complex boundaries,which may provide a new idea on analyzing the acoustic particle manipulation in confined space.展开更多
Polarization singularities in the near-field of Gaussian vortex beams diffracted by a circular aperture are studied by a rigorous electromagnetic theory. It is shown that there exist C-points and L-lines, which depend...Polarization singularities in the near-field of Gaussian vortex beams diffracted by a circular aperture are studied by a rigorous electromagnetic theory. It is shown that there exist C-points and L-lines, which depend on off-axis displacement parameters along the x and y directions, waist width, wavelength, and topological charge of the diffracted Gaussian vortex beam, as well as on propagation distance. The results are illustrated by numerical calculations.展开更多
In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arisi...In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arising from the log-correlated Gaussian field in the proof of the lower bound of the spatial asymptotics, we first establish the relation between quenched long-time asymptotics and spatial asymptotics, and then get the lower bound of the spatial asymptotics through the lower bound of the quenched long-time asymptotics.展开更多
In this paper we devote ourselves to extending Berman’s sojourn time method,which is thoroughly described in[1-3],to investigate the tail asymptotics of the extrema of a Gaussian random field over[0,T]^(d) with T∈(0...In this paper we devote ourselves to extending Berman’s sojourn time method,which is thoroughly described in[1-3],to investigate the tail asymptotics of the extrema of a Gaussian random field over[0,T]^(d) with T∈(0,∞).展开更多
Wind field simulation in the surface layer is often used to manage natural resources in terms of air quality,gene flow(through pollen drift),and plant disease transmission(spore dispersion).Although Lagrangian stochas...Wind field simulation in the surface layer is often used to manage natural resources in terms of air quality,gene flow(through pollen drift),and plant disease transmission(spore dispersion).Although Lagrangian stochastic(LS)models describe stochastic wind behaviors,such models assume that wind velocities follow Gaussian distributions.However,measured surface-layer wind velocities show a strong skewness and kurtosis.This paper presents an improved model,a non-Gaussian LS model,which incorporates controllable non-Gaussian random variables to simulate the targeted non-Gaussian velocity distribution with more accurate skewness and kurtosis.Wind velocity statistics generated by the non-Gaussian model are evaluated by using the field data from the Cooperative Atmospheric Surface Exchange Study,October 1999 experimental dataset and comparing the data with statistics from the original Gaussian model.Results show that the non-Gaussian model improves the wind trajectory simulation by stably producing precise skewness and kurtosis in simulated wind velocities without sacrificing other features of the traditional Gaussian LS model,such as the accuracy in the mean and variance of simulated velocities.This improvement also leads to better accuracy in friction velocity(i.e.,a coupling of three-dimensional velocities).The model can also accommodate various non-Gaussian wind fields and a wide range of skewness–kurtosis combinations.Moreover,improved skewness and kurtosis in the simulated velocity will result in a significantly different dispersion for wind/particle simulations.Thus,the non-Gaussian model is worth applying to wind field simulation in the surface layer.展开更多
This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half...This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.展开更多
Stochastic simulation is an important means of acquiring fluctuating wind pressures for wind induced response analyses in structural engineering. The wind pressure acting on a large-span space structure can be charact...Stochastic simulation is an important means of acquiring fluctuating wind pressures for wind induced response analyses in structural engineering. The wind pressure acting on a large-span space structure can be characterized as a stationary non-Gaussian field. This paper reviews several simulation algorithms related to the Spectral Representation Method (SRM) and the Static Transformation Method (STM). Polynomial and Exponential transformation functions (PSTM and ESTM) are discussed. Deficiencies in current algorithms, with respect to accuracy, stability and efficiency, are analyzed, and the algorithms are improved for better practical application. In order to verify the improved algorithm, wind pressure fields on a large-span roof are simulated and compared with wind tunnel data. The simulation results fit well with the wind tunnel data, and the algorithm accuracy, stability and efficiency are shown to be better than those of current algorithms.展开更多
Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the s...Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.展开更多
This paper discusses the problem of classifying a multivariate Gaussian random field observation into one of the several categories specified by different parametric mean models. Investigation is conducted on the clas...This paper discusses the problem of classifying a multivariate Gaussian random field observation into one of the several categories specified by different parametric mean models. Investigation is conducted on the classifier based on plug-in Bayes classification rule (PBCR) formed by replacing unknown parameters in Bayes classification rule (BCR) with category parameters estimators. This is the extension of the previous one from the two category cases to the multi-category case. The novel closed-form expressions for the Bayes classification probability and actual correct classification rate associated with PBCR are derived. These correct classification rates are suggested as performance measures for the classifications procedure. An empirical study has been carried out to analyze the dependence of derived classification rates on category parameters.展开更多
Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model corre...Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator~ zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points. If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.展开更多
In this work, we present the study of electromagnetic wave propagation through a medium with a variable dielectric function using the concept of Gaussian Beam. First of all, we start with wave equation with which we o...In this work, we present the study of electromagnetic wave propagation through a medium with a variable dielectric function using the concept of Gaussian Beam. First of all, we start with wave equation with which we obtain the solution in terms of the electric field and intensity distributions approximate to Gaussian Function, . With this, we analyze the dependency of r on Gaussian beam distribution spread, the distant from the axis at which the intensity of the beam distribution begins to fall at a given estimate of its peak value. The influence of the optimum beam waist wo and the beam spread on the intensity distribution will also be analyzed.展开更多
基金supported by the National Natural Science Foundation of China(12371150,11971432)the Natural Science Foundation of Zhejiang Province(LY21G010003)+2 种基金the Management Project of"Digital+"Discipline Construction of Zhejiang Gongshang University(SZJ2022A012,SZJ2022B017)the Characteristic&Preponderant Discipline of Key Construction Universities in Zhejiang Province(Zhejiang Gongshang University-Statistics)the Scientific Research Projects of Universities in Anhui Province(2022AH050955)。
文摘Let X={X(t)∈R^(d),t∈R^(N)}be a centered space-time anisotropic Gaussian field with indices H=(H_(1),…,H_(N))∈(0,1)~N,where the components X_(i)(i=1,…,d)of X are independent,and the canonical metric√(E(X_(i)(t)-X_(i)(s))^(2))^(1/2)(i=1,…,d)is commensurate with■for s=(s_(1),…,s_(N)),t=(t_(1),…,t_(N))∈R~N,α_(i)∈(0,1],and with the continuous functionγ(·)satisfying certain conditions.First,the upper and lower bounds of the hitting probabilities of X can be derived from the corresponding generalized Hausdorff measure and capacity,which are based on the kernel functions depending explicitly onγ(·).Furthermore,the multiple intersections of the sample paths of two independent centered space-time anisotropic Gaussian fields with different distributions are considered.Our results extend the corresponding results for anisotropic Gaussian fields to a large class of space-time anisotropic Gaussian fields.
基金Project supported by National Key R&D Program of China(Grant No.2016YFF0203000)the National Natural Science Foundation of China(Grant Nos.11774167 and 61571222)+2 种基金the Fundamental Research Funds for the Central Universities of China(Grant No.020414380001)the Key Laboratory of Underwater Acoustic Environment,Institute of Acoustics,Chinese Academy of Sciences(Grant No.SSHJ-KFKT-1701)the AQSIQ Technology R&D Program of China(Grant No.2017QK125)
文摘We develop a model for calculating the radiation force on spherically symmetric multilayered particles based on the acoustic scattering approach.An expression is derived for the radiation force on a multilayered sphere centered on the axis of a Gaussian standing wave propagating in an ideal fluid,The effects of the sound absorption of the materials and sound wave on acoustic radiation force of a multilayered sphere immersed in water are analyzed,with particular emphasis on the shell thickness of every layer,and the width of the Gaussian beam.The results reveal that the existence of particle trapping behavior depends on the choice of the non-dimensional frequency ka,as well as the shell thickness of each layer.This study provides a theoretical basis for the development of acoustical tweezers in a Gaussian standing wave,which may benefit the improvement and development of acoustic control technology,such as trapping,sorting,and assembling a cell,and drug delivery applications.
基金supported by the National Natural Science Foundation of China(Grant Nos.11604361 and 11904384)the National Key R&D Program of China(Grant No.2018 YFC0114900)Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.2019024)。
文摘Acoustic manipulation is one of the well-known technologies of particle control and a top research in acoustic field.Calculation of acoustic radiation force on a particle nearby boundaries is one of the critical tasks,as it approximates realistic applications.Nevertheless,it is quite difficult to solve the problem by theoretical method when the boundary conditions are intricate.In this study,we present a finite element method numerical model for the acoustic radiation force exerting on a rigid cylindrical particle immersed in fluid near a rigid corner.The effects of the boundaries on acoustic radiation force of a rigid cylinder are analyzed with particular emphasis on the non-dimensional frequency and the distance from the center of cylinder to each boundary.The results reveal that these parameters play important roles in acoustic manipulation for particle-nearby complicated rigid boundaries.This study verifies the feasibility of numerical analysis on the issue of acoustic radiation force calculation close to complex boundaries,which may provide a new idea on analyzing the acoustic particle manipulation in confined space.
基金Project supported by the China Postdoctoral Science Foundation (Grant No. 2009450159)the Foundation of the State Key Laboratory of Optical Technologies for Micro-Frabrication and Micro-Engineering,Chinese Academy of Sciences (Grant No. KF001)
文摘Polarization singularities in the near-field of Gaussian vortex beams diffracted by a circular aperture are studied by a rigorous electromagnetic theory. It is shown that there exist C-points and L-lines, which depend on off-axis displacement parameters along the x and y directions, waist width, wavelength, and topological charge of the diffracted Gaussian vortex beam, as well as on propagation distance. The results are illustrated by numerical calculations.
基金supported by the National Natural Science Foundation of China (12201282)the Institute of Meteorological Big Data-Digital Fujian and the Fujian Key Laboratory of Data Science and Statistics (2020L0705)the Education Department of Fujian Province (JAT200325)。
文摘In this paper, we consider the continuous parabolic Anderson model with a logcorrelated Gaussian field, and obtain the precise quenched long-time asymptotics and spatial asymptotics. To overcome the difficulties arising from the log-correlated Gaussian field in the proof of the lower bound of the spatial asymptotics, we first establish the relation between quenched long-time asymptotics and spatial asymptotics, and then get the lower bound of the spatial asymptotics through the lower bound of the quenched long-time asymptotics.
基金partially supported by National Natural Science Foundation of China(11701070,71871046)Ronglian Scholarship Fund.
文摘In this paper we devote ourselves to extending Berman’s sojourn time method,which is thoroughly described in[1-3],to investigate the tail asymptotics of the extrema of a Gaussian random field over[0,T]^(d) with T∈(0,∞).
基金financial support for this research from a USDA-AFRI Foundational Grant (Grant No. 2012-67013-19687)from the Illinois State Water Survey at the University of Illinois at Urbana—Champaign
文摘Wind field simulation in the surface layer is often used to manage natural resources in terms of air quality,gene flow(through pollen drift),and plant disease transmission(spore dispersion).Although Lagrangian stochastic(LS)models describe stochastic wind behaviors,such models assume that wind velocities follow Gaussian distributions.However,measured surface-layer wind velocities show a strong skewness and kurtosis.This paper presents an improved model,a non-Gaussian LS model,which incorporates controllable non-Gaussian random variables to simulate the targeted non-Gaussian velocity distribution with more accurate skewness and kurtosis.Wind velocity statistics generated by the non-Gaussian model are evaluated by using the field data from the Cooperative Atmospheric Surface Exchange Study,October 1999 experimental dataset and comparing the data with statistics from the original Gaussian model.Results show that the non-Gaussian model improves the wind trajectory simulation by stably producing precise skewness and kurtosis in simulated wind velocities without sacrificing other features of the traditional Gaussian LS model,such as the accuracy in the mean and variance of simulated velocities.This improvement also leads to better accuracy in friction velocity(i.e.,a coupling of three-dimensional velocities).The model can also accommodate various non-Gaussian wind fields and a wide range of skewness–kurtosis combinations.Moreover,improved skewness and kurtosis in the simulated velocity will result in a significantly different dispersion for wind/particle simulations.Thus,the non-Gaussian model is worth applying to wind field simulation in the surface layer.
基金Project supported by Natural Science Foundation of the Department of Science & Technology of Fujian Province of China (GrantNo 2007F5040)
文摘This paper analyzes the characteristic of matching efficiency between the fundamental mode of two kinds of optical waveguides and its Gaussian approximate field.Then, it presents a new method where the mode-field half-width of Caussian approximation for the fundamental mode should be defined according to the maximal matching efficiency method. The relationship between the mode-field half-width of the Gaussian approximate field obtained from the maximal matching efficiency and normalized frequency is studied; furthermore, two formulas of mode-field half-widths as a function of normalized frequency are proposed.
基金National Natural Science Foundation of China under Grant Nos.51278160,51478155,51378147
文摘Stochastic simulation is an important means of acquiring fluctuating wind pressures for wind induced response analyses in structural engineering. The wind pressure acting on a large-span space structure can be characterized as a stationary non-Gaussian field. This paper reviews several simulation algorithms related to the Spectral Representation Method (SRM) and the Static Transformation Method (STM). Polynomial and Exponential transformation functions (PSTM and ESTM) are discussed. Deficiencies in current algorithms, with respect to accuracy, stability and efficiency, are analyzed, and the algorithms are improved for better practical application. In order to verify the improved algorithm, wind pressure fields on a large-span roof are simulated and compared with wind tunnel data. The simulation results fit well with the wind tunnel data, and the algorithm accuracy, stability and efficiency are shown to be better than those of current algorithms.
基金Supported by National Natural Science Foundation of China(Grant No.51175316)Specialized Research Fund for the Doctoral Program of Higher Education,China(Grant No.20103108110006)Basic Research Project of Shanghai Science and Technology Commission,China(Grant No.11JC1404100)
文摘Online monitoring methods have been widely used in many major devices, however the normal and abnormal states of equipment are estimated mainly based on the monitoring results whether monitored parameters exceed the setting thresholds. Using these monitoring methods may cause serious false positive or false negative results. In order to precisely monitor the state of equipment, the problem of abnormality degree detection without fault sample is studied with a new detection method called negative potential field group detectors(NPFG-detectors). This method achieves the quantitative expression of abnormality degree and provides the better detection results compared with other methods. In the process of Iris data set simulation, the new algorithm obtains the successful results in abnormal detection. The detection rates for 3 types of Iris data set respectively reach 100%, 91.6%, and 95.24% with 50% training samples. The problem of Bearing abnormality degree detection via an abnormality degree curve is successfully solved.
文摘This paper discusses the problem of classifying a multivariate Gaussian random field observation into one of the several categories specified by different parametric mean models. Investigation is conducted on the classifier based on plug-in Bayes classification rule (PBCR) formed by replacing unknown parameters in Bayes classification rule (BCR) with category parameters estimators. This is the extension of the previous one from the two category cases to the multi-category case. The novel closed-form expressions for the Bayes classification probability and actual correct classification rate associated with PBCR are derived. These correct classification rates are suggested as performance measures for the classifications procedure. An empirical study has been carried out to analyze the dependence of derived classification rates on category parameters.
基金Project supported by the National Natural Science Foundation of China (Grant No 10574097).
文摘Based on the propagation law of cross-spectral density function, studied in this paper are the coherence vortices of partially coherent, quasi-monochromatic singular beams with Gaussian envelope and Schell-model correlator in the far field, where our main attention is paid to the evolution of far-field coherence vortices into intensity vortices of fully coherent beams. The results show that, although there are usually no zeros of intensity in partially coherent beams with Gaussian envelope and Schell-model correlator~ zeros of spectral degree of coherence exist. The coherence vortices of spectral degree of coherence depend on the relative coherence length, mode index and positions of pairs of points. If a point and mode index are kept fixed, the position of coherence vortices changes with the increase of the relative coherence length. For the low coherent case there is a circular phase dislocation. In the coherent limit coherence vortices become intensity vortices of fully coherent Laguerre-Gaussian beams.
文摘In this work, we present the study of electromagnetic wave propagation through a medium with a variable dielectric function using the concept of Gaussian Beam. First of all, we start with wave equation with which we obtain the solution in terms of the electric field and intensity distributions approximate to Gaussian Function, . With this, we analyze the dependency of r on Gaussian beam distribution spread, the distant from the axis at which the intensity of the beam distribution begins to fall at a given estimate of its peak value. The influence of the optimum beam waist wo and the beam spread on the intensity distribution will also be analyzed.