With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of ...A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of the states is Gaussian or can be identified as a Gaussian sum, the analytical results of the algorithm show that the posterior intensity at any subsequent time step remains a Gaussian sum under the assumption that the state noise, the measurement noise, target spawn intensity, new target birth intensity, target survival probability, and detection probability are all Gaussian sums. The analysis also shows that the existing Gaussian mixture probability hypothesis density (GMPHD) filter, which is unsuitable for handling the non-Gaussian noise cases, is no more than a special case of the proposed algorithm, which fills the shortage of incapability of treating non-Gaussian noise. The multi-target tracking simulation results verify the effectiveness of the proposed GSPHD.展开更多
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi...In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.展开更多
To improve the recognition ability of communication jamming signals,Siamese Neural Network-based Open World Recognition(SNNOWR)is proposed.The algorithm can recognize known jamming classes,detect new(unknown)jamming c...To improve the recognition ability of communication jamming signals,Siamese Neural Network-based Open World Recognition(SNNOWR)is proposed.The algorithm can recognize known jamming classes,detect new(unknown)jamming classes,and unsupervised cluseter new classes.The network of SNN-OWR is trained supervised with paired input data consisting of two samples from a known dataset.On the one hand,the network is required to have the ability to distinguish whether two samples are from the same class.On the other hand,the latent distribution of known class is forced to approach their own unique Gaussian distribution,which is prepared for the subsequent open set testing.During the test,the unknown class detection process based on Gaussian probability density function threshold is designed,and an unsupervised clustering algorithm of the unknown jamming is realized by using the prior knowledge of known classes.The simulation results show that when the jamming-to-noise ratio is more than 0d B,the accuracy of SNN-OWR algorithm for known jamming classes recognition,unknown jamming detection and unsupervised clustering of unknown jamming is about 95%.This indicates that the SNN-OWR algorithm can make the effect of the recognition of unknown jamming be almost the same as that of known jamming.展开更多
The Gaussian Copula Probability Density Function (PDF) plays an important role in the fields of finance, hydrological modeling, biomedical study, and texture retrieval. However, the existing schemes for evaluating t...The Gaussian Copula Probability Density Function (PDF) plays an important role in the fields of finance, hydrological modeling, biomedical study, and texture retrieval. However, the existing schemes for evaluating the Gaussian Copula PDF are all computationally-demanding and generally the most time-consuming part in the corresponding applications. In this paper, we propose an FPGA-based design to accelerate the computation of the Gaussian Copula PDF. Specifically, the evaluation of the Gaussian Copula PDF is mapped into a fully-pipelined FPGA dataflow engine by using three optimization steps: transforming the calculation pattern, eliminating constant computations from hardware logic, and extending calculations to multiple pipelines. In the experiments on 10 typical large-scale data sets, our FPGA-based solution shows a maximum of 1870 times speedup over a well-tuned single- core CPU-based solution, and 610 times speedup over a well-optimized parallel quad-core CPU-based solution when processing two-dimensional data.展开更多
With the circumstance of the electron strongly coupled to LO-phonon and using the variational method of Pekar type(VMPT),we study the eigenenergies and the eigenfunctions(EE) of the ground and the first excited st...With the circumstance of the electron strongly coupled to LO-phonon and using the variational method of Pekar type(VMPT),we study the eigenenergies and the eigenfunctions(EE) of the ground and the first excited states(GFES) in a RbCl crystal asymmetric Gaussian potential quantum well(AGPQW).It concludes:(i) Twoenergy-level of the AGPQW may be seen as a qubit.(ii) When the electron located in the superposition state of the two-energy-level system,the time evolution and the coordinate changes of the electron probability density oscillated periodically in the AGPQW with every certain period T0=22.475 fs.(iii) Due to the confinement that is a two dimensional x-y plane symmetric structure in the AGPQW and the asymmetrical Gaussian potential(AGP) in the AGPQW growth direction,the electron probability density presents only one peak configuration located in the coordinate of z 〉 0,whereas it is zero in the range of z 〈 0.(iv) The oscillatory period is a decreasing function of the AGPQW height and the polaron radius,(v) The oscillating period is a decreasing one in the confinement potential R 〈 0.24 nm,whereas it is an increasing one in the confinement potential R 〉 0.24 nm and it takes a minimum value in R = 0.24 nm.展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金National Natural Science Foundation of China (60572023)
文摘A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of the states is Gaussian or can be identified as a Gaussian sum, the analytical results of the algorithm show that the posterior intensity at any subsequent time step remains a Gaussian sum under the assumption that the state noise, the measurement noise, target spawn intensity, new target birth intensity, target survival probability, and detection probability are all Gaussian sums. The analysis also shows that the existing Gaussian mixture probability hypothesis density (GMPHD) filter, which is unsuitable for handling the non-Gaussian noise cases, is no more than a special case of the proposed algorithm, which fills the shortage of incapability of treating non-Gaussian noise. The multi-target tracking simulation results verify the effectiveness of the proposed GSPHD.
基金supported by the National Natural Science Foundation of China(6130501761304264+1 种基金61402203)the Natural Science Foundation of Jiangsu Province(BK20130154)
文摘In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.
基金supported by the National Natural Science Foundation of China(U19B2016)Zhejiang Provincial Key Lab of Data Storage and Transmission Technology,Hangzhou Dianzi University。
文摘To improve the recognition ability of communication jamming signals,Siamese Neural Network-based Open World Recognition(SNNOWR)is proposed.The algorithm can recognize known jamming classes,detect new(unknown)jamming classes,and unsupervised cluseter new classes.The network of SNN-OWR is trained supervised with paired input data consisting of two samples from a known dataset.On the one hand,the network is required to have the ability to distinguish whether two samples are from the same class.On the other hand,the latent distribution of known class is forced to approach their own unique Gaussian distribution,which is prepared for the subsequent open set testing.During the test,the unknown class detection process based on Gaussian probability density function threshold is designed,and an unsupervised clustering algorithm of the unknown jamming is realized by using the prior knowledge of known classes.The simulation results show that when the jamming-to-noise ratio is more than 0d B,the accuracy of SNN-OWR algorithm for known jamming classes recognition,unknown jamming detection and unsupervised clustering of unknown jamming is about 95%.This indicates that the SNN-OWR algorithm can make the effect of the recognition of unknown jamming be almost the same as that of known jamming.
基金supported in part by the National Natural Science Foundation of China (Nos. 61303003,41374113,and 41375102)the National High-Tech Research and Development (863) Program of China (Nos. 2011AA01A203 and 2013AA01A208)the National Key Basic Research and Development (973) Program of China (No. 2014CB347800)
文摘The Gaussian Copula Probability Density Function (PDF) plays an important role in the fields of finance, hydrological modeling, biomedical study, and texture retrieval. However, the existing schemes for evaluating the Gaussian Copula PDF are all computationally-demanding and generally the most time-consuming part in the corresponding applications. In this paper, we propose an FPGA-based design to accelerate the computation of the Gaussian Copula PDF. Specifically, the evaluation of the Gaussian Copula PDF is mapped into a fully-pipelined FPGA dataflow engine by using three optimization steps: transforming the calculation pattern, eliminating constant computations from hardware logic, and extending calculations to multiple pipelines. In the experiments on 10 typical large-scale data sets, our FPGA-based solution shows a maximum of 1870 times speedup over a well-tuned single- core CPU-based solution, and 610 times speedup over a well-optimized parallel quad-core CPU-based solution when processing two-dimensional data.
基金Project supported by the National Natural Science Foundation of China(No.11464033)the Mongolia University for Nationalities Fund(No.NMDYB1445)
文摘With the circumstance of the electron strongly coupled to LO-phonon and using the variational method of Pekar type(VMPT),we study the eigenenergies and the eigenfunctions(EE) of the ground and the first excited states(GFES) in a RbCl crystal asymmetric Gaussian potential quantum well(AGPQW).It concludes:(i) Twoenergy-level of the AGPQW may be seen as a qubit.(ii) When the electron located in the superposition state of the two-energy-level system,the time evolution and the coordinate changes of the electron probability density oscillated periodically in the AGPQW with every certain period T0=22.475 fs.(iii) Due to the confinement that is a two dimensional x-y plane symmetric structure in the AGPQW and the asymmetrical Gaussian potential(AGP) in the AGPQW growth direction,the electron probability density presents only one peak configuration located in the coordinate of z 〉 0,whereas it is zero in the range of z 〈 0.(iv) The oscillatory period is a decreasing function of the AGPQW height and the polaron radius,(v) The oscillating period is a decreasing one in the confinement potential R 〈 0.24 nm,whereas it is an increasing one in the confinement potential R 〉 0.24 nm and it takes a minimum value in R = 0.24 nm.