针对使用深度神经网络进行多视角图像三维重建时存在特征图对光照变化敏感以及重建不完整的问题,提出了一种融合梯度和高斯过程回归的多视图重建方法.首先,针对光照变化影响提取特征的问题,设计一个融合梯度的特征提取网络.通过对图像...针对使用深度神经网络进行多视角图像三维重建时存在特征图对光照变化敏感以及重建不完整的问题,提出了一种融合梯度和高斯过程回归的多视图重建方法.首先,针对光照变化影响提取特征的问题,设计一个融合梯度的特征提取网络.通过对图像进行独立的梯度计算并在梯度与原图像的基础上使用卷积神经网络提取特征,提高了梯度信息在特征图中的彩响力,增强了特征图对光照变化因素影响的抑制力.其次,针对多视图重建中特征提取步骤只关注当前视图而没有考虑视图间的潜在空间关系的问题,提出一个融合高斯过程回归算法的视图特征增强模块,有效地增益了视图间相关信息对多视立体视觉重建任务的影响,提高了多视立体视觉重建结果的完整度.最后,通过衡量参考图像与相邻图像特征体之间的匹配程度计算不同视图对Costvolume的贡献度,重新构建符合视觉感知的CostVolume.在DTU和Tanks and Temples数据集上进行实验,结果表明,与主流的多视立体视觉重建方法相比,该方法在三维重建的完整度方面有较大提升,并且拥有良好的泛化性.展开更多
文摘针对使用深度神经网络进行多视角图像三维重建时存在特征图对光照变化敏感以及重建不完整的问题,提出了一种融合梯度和高斯过程回归的多视图重建方法.首先,针对光照变化影响提取特征的问题,设计一个融合梯度的特征提取网络.通过对图像进行独立的梯度计算并在梯度与原图像的基础上使用卷积神经网络提取特征,提高了梯度信息在特征图中的彩响力,增强了特征图对光照变化因素影响的抑制力.其次,针对多视图重建中特征提取步骤只关注当前视图而没有考虑视图间的潜在空间关系的问题,提出一个融合高斯过程回归算法的视图特征增强模块,有效地增益了视图间相关信息对多视立体视觉重建任务的影响,提高了多视立体视觉重建结果的完整度.最后,通过衡量参考图像与相邻图像特征体之间的匹配程度计算不同视图对Costvolume的贡献度,重新构建符合视觉感知的CostVolume.在DTU和Tanks and Temples数据集上进行实验,结果表明,与主流的多视立体视觉重建方法相比,该方法在三维重建的完整度方面有较大提升,并且拥有良好的泛化性.