The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are...The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are inferred based on the maximum likelihood rule. Secondly, the forgetting factor and learning rate factor are redefined, and their still more general formulations are obtained by analyzing their practical functions. Lastly, the convergence of the proposed algorithm is proved to enable the estimation converge to a local maximum of the data likelihood function according to the stochastic approximation theory. The experiments show that the proposed learning algorithm excels the formers both in converging rate and accuracy.展开更多
Tracking and segmentation of moving objects are suffering from many problems including those caused by elimination changes, noise and shadows. A modified algorithm for the adaptive background model is proposed by link...Tracking and segmentation of moving objects are suffering from many problems including those caused by elimination changes, noise and shadows. A modified algorithm for the adaptive background model is proposed by linking Gaussian mixture model with the method of principal component analysis PCA. This approach utilizes the advantage of the PCA method in providing the projections that capture the most relevant pixels for segmentation within the background models. We report the update on both the parameters of the modified method and that of the Gaussian mixture model. The obtained results show the relatively outperform of the integrated method.展开更多
Directing to the weakness of the present fixed values mapping methods (method_F), a vocal tract system conversion method based on the universal background model (UBM) is proposed for improving the performance of t...Directing to the weakness of the present fixed values mapping methods (method_F), a vocal tract system conversion method based on the universal background model (UBM) is proposed for improving the performance of the speech conversion system from Chinese whis- pered speech to normal speech. For the numerous components of UBM, the errors produced by the acoustical probability density statistical model can't be ignored. Thus an effective Gaus- sian mixture components chosen method based on the posterior probability summation of the minimum spectral distortion is developed to optimizing the system performance. The proposed method (method_U) is analyzed and compared using the performance index (PI) based on Itakura-Saito spectral distortion measure. It is shown experimentally that the performance of method_U is more stability for different speakers and different phonemes than that of method_F. The average PI of method_U is better than method_F. It is shown that by selecting effective Gaussian mixture components, the PI of method_U can be further improved 5.11%. Subjective auditory tests also show that the proposed method can improve the definition and intelligibility of conversion speech.展开更多
基金the Doctorate Foundation of the Engineering College, Air Force Engineering University.
文摘The key problem of the adaptive mixture background model is that the parameters can adaptively change according to the input data. To address the problem, a new method is proposed. Firstly, the recursive equations are inferred based on the maximum likelihood rule. Secondly, the forgetting factor and learning rate factor are redefined, and their still more general formulations are obtained by analyzing their practical functions. Lastly, the convergence of the proposed algorithm is proved to enable the estimation converge to a local maximum of the data likelihood function according to the stochastic approximation theory. The experiments show that the proposed learning algorithm excels the formers both in converging rate and accuracy.
文摘Tracking and segmentation of moving objects are suffering from many problems including those caused by elimination changes, noise and shadows. A modified algorithm for the adaptive background model is proposed by linking Gaussian mixture model with the method of principal component analysis PCA. This approach utilizes the advantage of the PCA method in providing the projections that capture the most relevant pixels for segmentation within the background models. We report the update on both the parameters of the modified method and that of the Gaussian mixture model. The obtained results show the relatively outperform of the integrated method.
基金supported by the National Natural Science Foundation of China(61071215)the Science and Technology Foundation of Suzhou(SYG201033)the Pre-research Foundation of Soochow University(Q311901111,14317399)
文摘Directing to the weakness of the present fixed values mapping methods (method_F), a vocal tract system conversion method based on the universal background model (UBM) is proposed for improving the performance of the speech conversion system from Chinese whis- pered speech to normal speech. For the numerous components of UBM, the errors produced by the acoustical probability density statistical model can't be ignored. Thus an effective Gaus- sian mixture components chosen method based on the posterior probability summation of the minimum spectral distortion is developed to optimizing the system performance. The proposed method (method_U) is analyzed and compared using the performance index (PI) based on Itakura-Saito spectral distortion measure. It is shown experimentally that the performance of method_U is more stability for different speakers and different phonemes than that of method_F. The average PI of method_U is better than method_F. It is shown that by selecting effective Gaussian mixture components, the PI of method_U can be further improved 5.11%. Subjective auditory tests also show that the proposed method can improve the definition and intelligibility of conversion speech.