精确估计多层材料超声回波信号的重数在超声检测上有着要意义。将小波变换方法用于多层材料超声回波参数估计中,根据高斯模型以超声回波信号的小波变换为基础、利用智能人工蜂群算法,估计出多重超声回波信号的各个参数。采用Akaike Info...精确估计多层材料超声回波信号的重数在超声检测上有着要意义。将小波变换方法用于多层材料超声回波参数估计中,根据高斯模型以超声回波信号的小波变换为基础、利用智能人工蜂群算法,估计出多重超声回波信号的各个参数。采用Akaike Information Criterion(AIC)准则,对叠加的两重和三重超声回波信号的重数进行估计。仿真结果表明,本算法可以实现多重超声回波信号重数的有效估计。用实验测试获得的回波对算法的性能进行了验证,结果证明了该算法的可行性和实用性。展开更多
为改善混响背景下传统匹配滤波算法效果不佳问题,在分析其非平稳性、有色性和非高斯性的基础上,提出了混合高斯时变自回归模型(Gaussian mixture Tvar Model,GTM),推导了模型公式及其参数求解方法,形成了GTM回波检测算法。为对混响特性...为改善混响背景下传统匹配滤波算法效果不佳问题,在分析其非平稳性、有色性和非高斯性的基础上,提出了混合高斯时变自回归模型(Gaussian mixture Tvar Model,GTM),推导了模型公式及其参数求解方法,形成了GTM回波检测算法。为对混响特性及滤波效果进行定量描述进而验证算法性能,给出了一种定量衡量混响非平稳性、有色性、非高斯特性的滤波效果评价方法。通过实测混响分析表明,GTM模型能够较好地拟合实测混响的概率密度曲线和功率谱密度曲线,实现了混响背景下回波的有效检测并改善混响特性。展开更多
文摘精确估计多层材料超声回波信号的重数在超声检测上有着要意义。将小波变换方法用于多层材料超声回波参数估计中,根据高斯模型以超声回波信号的小波变换为基础、利用智能人工蜂群算法,估计出多重超声回波信号的各个参数。采用Akaike Information Criterion(AIC)准则,对叠加的两重和三重超声回波信号的重数进行估计。仿真结果表明,本算法可以实现多重超声回波信号重数的有效估计。用实验测试获得的回波对算法的性能进行了验证,结果证明了该算法的可行性和实用性。
文摘为改善混响背景下传统匹配滤波算法效果不佳问题,在分析其非平稳性、有色性和非高斯性的基础上,提出了混合高斯时变自回归模型(Gaussian mixture Tvar Model,GTM),推导了模型公式及其参数求解方法,形成了GTM回波检测算法。为对混响特性及滤波效果进行定量描述进而验证算法性能,给出了一种定量衡量混响非平稳性、有色性、非高斯特性的滤波效果评价方法。通过实测混响分析表明,GTM模型能够较好地拟合实测混响的概率密度曲线和功率谱密度曲线,实现了混响背景下回波的有效检测并改善混响特性。