With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved ...With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.展开更多
Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,P...Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.展开更多
Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetric...Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetricα-stable distributed variable.As the probability density function(PDF)of the ASαSG is complicated,traditional estimators cannot provide optimum estimates.Based on the Metropolis-Hastings(M-H)sampling scheme,a robust frequency estimator is proposed for ASαSG noise.Moreover,to accelerate the convergence rate of the developed algorithm,a new criterion of reconstructing the proposal covar-iance is derived,whose main idea is updating the proposal variance using several previous samples drawn in each iteration.The approximation PDF of the ASαSG noise,which is referred to the weighted sum of a Voigt function and a Gaussian PDF,is also employed to reduce the computational complexity.The computer simulations show that the performance of our method is better than the maximum likelihood and the lp-norm estimators.展开更多
The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter w...The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information,thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity,state,and number effectively.展开更多
A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of ...A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of the states is Gaussian or can be identified as a Gaussian sum, the analytical results of the algorithm show that the posterior intensity at any subsequent time step remains a Gaussian sum under the assumption that the state noise, the measurement noise, target spawn intensity, new target birth intensity, target survival probability, and detection probability are all Gaussian sums. The analysis also shows that the existing Gaussian mixture probability hypothesis density (GMPHD) filter, which is unsuitable for handling the non-Gaussian noise cases, is no more than a special case of the proposed algorithm, which fills the shortage of incapability of treating non-Gaussian noise. The multi-target tracking simulation results verify the effectiveness of the proposed GSPHD.展开更多
The statistical and distribution characteristics of the responses of a floater and its mooring lines are essential in designing floating/mooring systems.In general,the dynamic responses of offshore structures obey a G...The statistical and distribution characteristics of the responses of a floater and its mooring lines are essential in designing floating/mooring systems.In general,the dynamic responses of offshore structures obey a Gaussian distribution,assuming that the structural system,and sea loads are linear or weakly nonlinear.However,mooring systems and wave loads are considerably nonlinear,and the dynamic responses of hull/mooring systems are non-Gaussian.In this study,the dynamic responses of two types of floaters,semi-submersible and spar platforms,and their mooring lines are computed using coupled dynamic analysis in the time domain.Herein,the statistical characteristics and distributions of the hull motion and mooring line tension are discussed and compared.The statistical distributions of the dynamic responses have strong non-Gaussianity and are unreasonably fitted by a Gaussian distribution for the two floating and mooring systems.Then,the effects of water depth,wave parameters,and low-frequency and wave-frequency components on the non-Gaussianity of the hull motion,and mooring line tension are investigated and discussed.A comparison of the statistical distributions of the responses with various probability density functions,including the Gamma,Gaussian,General Extreme Value,Weibull,and Gaussian Mixture Model(GMM)distributions,shows that the GMM distribution is better than the others for characterizing the statistical distributions of the hull motion,and mooring line tension responses.Furthermore,the GMM distribution has the best accuracy of response prediction.展开更多
In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussi...In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.展开更多
The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of P...The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter.展开更多
基金supported by the National Natural Science Foundation of China(61703228)
文摘With the increment of the number of Gaussian components, the computation cost increases in the Gaussian mixture probability hypothesis density(GM-PHD) filter. Based on the theory of Chen et al, we propose an improved pruning algorithm for the GM-PHD filter, which utilizes not only the Gaussian components’ means and covariance, but their weights as a new criterion to improve the estimate accuracy of the conventional pruning algorithm for tracking very closely proximity targets. Moreover, it solves the end-less while-loop problem without the need of a second merging step. Simulation results show that this improved algorithm is easier to implement and more robust than the formal ones.
基金Supported by the National Natural Science Foundation of China (No.60772154)the President Foundation of Graduate University of Chinese Academy of Sciences (No.085102GN00)
文摘Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise,clutter and misdetection. For linear Gaussian Mixture (GM) system,PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are com-putationally expensive. In this paper,we proposed a new data association algorithm using GMPHD filter,which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.
基金supported by National Key R&D Program of China(Grant No.2018YFF01012600)National Natural Science Foundation of China(Grant No.61701021)Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-19-006A3).
文摘Here the estimating problem of a single sinusoidal signal in the additive symmetricα-stable Gaussian(ASαSG)noise is investigated.The ASαSG noise here is expressed as the additive of a Gaussian noise and a symmetricα-stable distributed variable.As the probability density function(PDF)of the ASαSG is complicated,traditional estimators cannot provide optimum estimates.Based on the Metropolis-Hastings(M-H)sampling scheme,a robust frequency estimator is proposed for ASαSG noise.Moreover,to accelerate the convergence rate of the developed algorithm,a new criterion of reconstructing the proposal covar-iance is derived,whose main idea is updating the proposal variance using several previous samples drawn in each iteration.The approximation PDF of the ASαSG noise,which is referred to the weighted sum of a Voigt function and a Gaussian PDF,is also employed to reduce the computational complexity.The computer simulations show that the performance of our method is better than the maximum likelihood and the lp-norm estimators.
基金Supports in part by the NSFC (No. 60772006, 60874105)the ZJNSF(Y1080422, R106745)NCET (08- 0345)
文摘The original Probability Hypothesis Density (PHD) filter is a tractable algorithm for Multi-Target Tracking (MTT) in Random Finite Set (RFS) frameworks. In this paper,we introduce a novel Evidence PHD (E-PHD) filter which combines the Dempster-Shafer (DS) evidence theory. The proposed filter can deal with the uncertain information,thus it forms target track. We mainly discusses the E-PHD filter under the condition of linear Gaussian. Research shows that the E-PHD filter has an analytic form of Evidence Gaussian Mixture PHD (E-GMPHD). The final experiment shows that the proposed E-GMPHD filter can derive the target identity,state,and number effectively.
基金National Natural Science Foundation of China (60572023)
文摘A new multi-target filtering algorithm, termed as the Gaussian sum probability hypothesis density (GSPHD) filter, is proposed for nonlinear non-Gaussian tracking models. Provided that the initial prior intensity of the states is Gaussian or can be identified as a Gaussian sum, the analytical results of the algorithm show that the posterior intensity at any subsequent time step remains a Gaussian sum under the assumption that the state noise, the measurement noise, target spawn intensity, new target birth intensity, target survival probability, and detection probability are all Gaussian sums. The analysis also shows that the existing Gaussian mixture probability hypothesis density (GMPHD) filter, which is unsuitable for handling the non-Gaussian noise cases, is no more than a special case of the proposed algorithm, which fills the shortage of incapability of treating non-Gaussian noise. The multi-target tracking simulation results verify the effectiveness of the proposed GSPHD.
基金the support by the National Natural Science Foundation of China(Nos.51709247 and 51490675)the National Key R&D Program of China(No.2016YFE0200100)
文摘The statistical and distribution characteristics of the responses of a floater and its mooring lines are essential in designing floating/mooring systems.In general,the dynamic responses of offshore structures obey a Gaussian distribution,assuming that the structural system,and sea loads are linear or weakly nonlinear.However,mooring systems and wave loads are considerably nonlinear,and the dynamic responses of hull/mooring systems are non-Gaussian.In this study,the dynamic responses of two types of floaters,semi-submersible and spar platforms,and their mooring lines are computed using coupled dynamic analysis in the time domain.Herein,the statistical characteristics and distributions of the hull motion and mooring line tension are discussed and compared.The statistical distributions of the dynamic responses have strong non-Gaussianity and are unreasonably fitted by a Gaussian distribution for the two floating and mooring systems.Then,the effects of water depth,wave parameters,and low-frequency and wave-frequency components on the non-Gaussianity of the hull motion,and mooring line tension are investigated and discussed.A comparison of the statistical distributions of the responses with various probability density functions,including the Gamma,Gaussian,General Extreme Value,Weibull,and Gaussian Mixture Model(GMM)distributions,shows that the GMM distribution is better than the others for characterizing the statistical distributions of the hull motion,and mooring line tension responses.Furthermore,the GMM distribution has the best accuracy of response prediction.
基金supported by the National Natural Science Foundation of China(6130501761304264+1 种基金61402203)the Natural Science Foundation of Jiangsu Province(BK20130154)
文摘In this paper, we consider the problem of irregular shapes tracking for multiple extended targets by introducing the Gaussian surface matrix(GSM) into the framework of the random finite set(RFS) theory. The Gaussian surface function is constructed first by the measurements, and it is used to define the GSM via a mapping function. We then integrate the GSM with the probability hypothesis density(PHD) filter, the Bayesian recursion formulas of GSM-PHD are derived and the Gaussian mixture implementation is employed to obtain the closed-form solutions. Moreover, the estimated shapes are designed to guide the measurement set sub-partition, which can cope with the problem of the spatially close target tracking. Simulation results show that the proposed algorithm can effectively estimate irregular target shapes and exhibit good robustness in cross extended target tracking.
基金Supported in Part by the Foundation of the Excellent State Key Laboratory under Grant 40523005,and the Ministry of Education of China
文摘The probability hypothesis density (PHD) propagates the posterior intensity in place of the poste- rior probability density of the multi-target state. The cardinalized PHD (CPHD) recursion is a generalization of PHD recursion, which jointly propagates the posterior intensity function and posterior cardinality distribution. A number of sequential Monte Carlo (SMC) implementations of PHD and CPHD filters (also known as SMC- PHD and SMC-CPHD filters, respectively) for general non-linear non-Gaussian models have been proposed. However, these approaches encounter the limitations when the observation variable is analytically unknown or the observation noise is null or too small. In this paper, we propose a convolution kernel approach in the SMC-CPHD filter. The simuIation results show the performance of the proposed filter on several simulated case studies when compared to the SMC-CPHD filter.