期刊文献+
共找到555篇文章
< 1 2 28 >
每页显示 20 50 100
Gaussian mixture models for clustering and classifying traffic flow in real-time for traffic operation and management 被引量:1
1
作者 孙璐 张惠民 +3 位作者 高荣 顾文钧 徐冰 陈鲤梁 《Journal of Southeast University(English Edition)》 EI CAS 2011年第2期174-179,共6页
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ... Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc. 展开更多
关键词 traffic flow patterns gaussian mixture model level of service data mining cluster analysis CLASSIFIER
下载PDF
An unsupervised clustering method for nuclear magnetic resonance transverse relaxation spectrums based on the Gaussian mixture model and its application 被引量:2
2
作者 GE Xinmin XUE Zong’an +6 位作者 ZHOU Jun HU Falong LI Jiangtao ZHANG Hengrong WANG Shuolong NIU Shenyuan ZHAO Ji’er 《Petroleum Exploration and Development》 CSCD 2022年第2期339-348,共10页
To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed t... To make the quantitative results of nuclear magnetic resonance(NMR) transverse relaxation(T;) spectrums reflect the type and pore structure of reservoir more directly, an unsupervised clustering method was developed to obtain the quantitative pore structure information from the NMR T;spectrums based on the Gaussian mixture model(GMM). Firstly, We conducted the principal component analysis on T;spectrums in order to reduce the dimension data and the dependence of the original variables. Secondly, the dimension-reduced data was fitted using the GMM probability density function, and the model parameters and optimal clustering numbers were obtained according to the expectation-maximization algorithm and the change of the Akaike information criterion. Finally, the T;spectrum features and pore structure types of different clustering groups were analyzed and compared with T;geometric mean and T;arithmetic mean. The effectiveness of the algorithm has been verified by numerical simulation and field NMR logging data. The research shows that the clustering results based on GMM method have good correlations with the shape and distribution of the T;spectrum, pore structure, and petroleum productivity, providing a new means for quantitative identification of pore structure, reservoir grading, and oil and gas productivity evaluation. 展开更多
关键词 NMR T2 spectrum gaussian mixture model expectation-maximization algorithm Akaike information criterion unsupervised clustering method quantitative pore structure evaluation
下载PDF
EFFECTIVE IMAGE SEGMENTATION FRAMEWORK FOR GAUSSIAN MIXTURE MODEL INCORPORATING LOCAL INFORMATION 被引量:3
3
作者 蔡维玲 丁军娣 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2008年第4期266-274,共9页
A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec-... A new two-step framework is proposed for image segmentation. In the first step, the gray-value distribution of the given image is reshaped to have larger inter-class variance and less intra-class variance. In the sec- ond step, the discriminant-based methods or clustering-based methods are performed on the reformed distribution. It is focused on the typical clustering methods-Gaussian mixture model (GMM) and its variant to demonstrate the feasibility of the framework. Due to the independence of the first step in its second step, it can be integrated into the pixel-based and the histogram-based methods to improve their segmentation quality. The experiments on artificial and real images show that the framework can achieve effective and robust segmentation results. 展开更多
关键词 pattern recognition image processing image segmentation gaussian mixture model gmm expectation maximization (EM)
下载PDF
A Robust Indoor Localization Algorithm Based on Polynomial Fitting and Gaussian Mixed Model 被引量:2
4
作者 Long Cheng Peng Zhao +1 位作者 Dacheng Wei Yan Wang 《China Communications》 SCIE CSCD 2023年第2期179-197,共19页
Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex enviro... Wireless sensor network(WSN)positioning has a good effect on indoor positioning,so it has received extensive attention in the field of positioning.Non-line-of sight(NLOS)is a primary challenge in indoor complex environment.In this paper,a robust localization algorithm based on Gaussian mixture model and fitting polynomial is proposed to solve the problem of NLOS error.Firstly,fitting polynomials are used to predict the measured values.The residuals of predicted and measured values are clustered by Gaussian mixture model(GMM).The LOS probability and NLOS probability are calculated according to the clustering centers.The measured values are filtered by Kalman filter(KF),variable parameter unscented Kalman filter(VPUKF)and variable parameter particle filter(VPPF)in turn.The distance value processed by KF and VPUKF and the distance value processed by KF,VPUKF and VPPF are combined according to probability.Finally,the maximum likelihood method is used to calculate the position coordinate estimation.Through simulation comparison,the proposed algorithm has better positioning accuracy than several comparison algorithms in this paper.And it shows strong robustness in strong NLOS environment. 展开更多
关键词 wireless sensor network indoor localization NLOS environment gaussian mixture model(gmm) fitting polynomial
下载PDF
Clustering in the Wireless Channel with a Power Weighted Statistical Mixture Model in Indoor Scenario 被引量:4
5
作者 Yupeng Li Jianhua Zhang +1 位作者 Pan Tang Lei Tian 《China Communications》 SCIE CSCD 2019年第7期83-95,共13页
Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power in... Cluster-based channel model is the main stream of fifth generation mobile communications, thus the accuracy of clustering algorithm is important. Traditional Gaussian mixture model (GMM) does not consider the power information which is important for the channel multipath clustering. In this paper, a normalized power weighted GMM (PGMM) is introduced to model the channel multipath components (MPCs). With MPC power as a weighted factor, the PGMM can fit the MPCs in accordance with the cluster-based channel models. Firstly, expectation maximization (EM) algorithm is employed to optimize the PGMM parameters. Then, to further increase the searching ability of EM and choose the optimal number of components without resort to cross-validation, the variational Bayesian (VB) inference is employed. Finally, 28 GHz indoor channel measurement data is used to demonstrate the effectiveness of the PGMM clustering algorithm. 展开更多
关键词 channel MULTIPATH clustering mmWave gaussian mixture model EXPECTATION MAXIMIZATION VARIATIONAL Bayesian INFERENCE
下载PDF
A multi-target tracking algorithm based on Gaussian mixture model 被引量:3
6
作者 SUN Lili CAO Yunhe +1 位作者 WU Wenhua LIU Yutao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2020年第3期482-487,共6页
Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is ... Since the joint probabilistic data association(JPDA)algorithm results in calculation explosion with the increasing number of targets,a multi-target tracking algorithm based on Gaussian mixture model(GMM)clustering is proposed.The algorithm is used to cluster the measurements,and the association matrix between measurements and tracks is constructed by the posterior probability.Compared with the traditional data association algorithm,this algorithm has better tracking performance and less computational complexity.Simulation results demonstrate the effectiveness of the proposed algorithm. 展开更多
关键词 multiple-target tracking gaussian mixture model(gmm) data association expectation maximization(EM)algorithm
下载PDF
Parameter Optimization Method for Gaussian Mixture Model with Data Evolution
7
作者 於跃成 生佳根 邹晓华 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第4期394-404,共11页
To learn from evolutionary experimental data points effectively,an evolutionary Gaussian mixture model based on constraint consistency(EGMM)is proposed and the corresponding method of parameter optimization is present... To learn from evolutionary experimental data points effectively,an evolutionary Gaussian mixture model based on constraint consistency(EGMM)is proposed and the corresponding method of parameter optimization is presented.Here,the Gaussian mixture model(GMM)is adopted to describe the data points,and the differences between the posterior probabilities of pairwise points under the current parameters are introduced to measure the temporal smoothness.Then,parameter optimization of EGMM can be realized by evolutionary clustering.Compared with most of the existing data analysis methods by evolutionary clustering,both the whole features and individual differences of data points are considered in the clustering framework of EGMM.It decreases the algorithm sensitivity to noises and increases the robustness of evaluated parameters.Experimental result shows that the clustering sequence really reflects the shift of data distribution,and the proposed algorithm can provide better clustering quality and temporal smoothness. 展开更多
关键词 evolutionary clustering evolutionary gaussian mixture model temporal smoothness parameter optimization
下载PDF
基于GMM和GA-LSTM的稀土熔盐电解过程原料含量状态识别模型
8
作者 张震 朱尚琳 +3 位作者 伍昕宇 刘飞飞 何鑫凤 王家超 《中国有色金属学报》 EI CAS CSCD 北大核心 2024年第5期1727-1742,共16页
在高温高风险的稀土熔盐电解工艺中,为了实现稀土熔盐电解过程原料含量状态的智能识别,提出了一种基于混合高斯背景建模(GMM)和遗传算法优化的长短期记忆神经网络(GA-LSTM)的分类模型。模型通过GMM算法、R通道自适应滤波和中值滤波准确... 在高温高风险的稀土熔盐电解工艺中,为了实现稀土熔盐电解过程原料含量状态的智能识别,提出了一种基于混合高斯背景建模(GMM)和遗传算法优化的长短期记忆神经网络(GA-LSTM)的分类模型。模型通过GMM算法、R通道自适应滤波和中值滤波准确提取图像的火焰前景和特征,以量化熔盐电解反应的剧烈程度,进而判断稀土熔盐电解处于原料含量过多或含量正常状态;然后利用GA-LSTM神经网络建立熔盐表面火焰特征和稀土熔盐电解过程原料含量状态的非线性映射关系。结果表明:模型的识别精度高达99.79%,具有较好的泛化性,为实现稀土熔盐电解工艺自动化提供了一定的参考价值。 展开更多
关键词 稀土熔盐 火焰 特征 混合高斯模型 长短期记忆神经网络 遗传算法
下载PDF
ON USING NON-LINEAR CANONICAL CORRELATION ANALYSIS FOR VOICE CONVERSION BASED ON GAUSSIAN MIXTURE MODEL
9
作者 Jian Zhihua Yang Zhen 《Journal of Electronics(China)》 2010年第1期1-7,共7页
Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters fo... Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation. 展开更多
关键词 Speech processing Voice conversion Non-Linear Canonical Correlation Analysis(NLCCA) gaussian mixture model(gmm)
下载PDF
A GAUSSIAN MIXTURE MODEL-BASED REGULARIZATION METHOD IN ADAPTIVE IMAGE RESTORATION
10
作者 Liu Peng Zhang Yan Mao Zhigang 《Journal of Electronics(China)》 2007年第1期83-89,共7页
A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region accor... A GMM (Gaussian Mixture Model) based adaptive image restoration is proposed in this paper. The feature vectors of pixels are selected and extracted. Pixels are clustered into smooth,edge or detail texture region according to variance-sum criteria function of the feature vectors. Then pa-rameters of GMM are calculated by using the statistical information of these feature vectors. GMM predicts the regularization parameter for each pixel adaptively. Hopfield Neural Network (Hopfield-NN) is used to optimize the objective function of image restoration,and network weight value matrix is updated by the output of GMM. Since GMM is used,the regularization parameters share properties of different kind of regions. In addition,the regularization parameters are different from pixel to pixel. GMM-based regularization method is consistent with human visual system,and it has strong gener-alization capability. Comparing with non-adaptive and some adaptive image restoration algorithms,experimental results show that the proposed algorithm obtains more preferable restored images. 展开更多
关键词 Image processing gaussian mixture model gmm Hopfield Neural Network (Hopfield-NN) REGULARIZATION Adaptive image restoration
下载PDF
Online split-and-merge expec tation-maximization training of Gaussian mixture model and its optimization
11
作者 Ran Xin Zhang Yongxin 《High Technology Letters》 EI CAS 2012年第3期302-307,共6页
This paper presents a new online incremental training algorithm of Gaussian mixture model (GMM), which aims to perform the expectation-maximization(EM) training incrementally to update GMM model parameters online ... This paper presents a new online incremental training algorithm of Gaussian mixture model (GMM), which aims to perform the expectation-maximization(EM) training incrementally to update GMM model parameters online sample by sample, instead of waiting for a block of data with the sufficient size to start training as in the traditional EM procedure. The proposed method is extended from the split-and-merge EM procedure, so inherently it is also capable escaping from local maxima and reducing the chances of singularities. In the application domain, the algorithm is optimized in the context of speech processing applications. Experiments on the synthetic data show the advantage and efficiency of the new method and the results in a speech processing task also confirm the improvement of system performance. 展开更多
关键词 gaussian mixture model gmm online training split-and-merge expectation-maximization(SMEM) speech processing
下载PDF
Integration of Expectation Maximization using Gaussian Mixture Models and Naïve Bayes for Intrusion Detection
12
作者 Loka Raj Ghimire Roshan Chitrakar 《Journal of Computer Science Research》 2021年第2期1-10,共10页
Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique ... Intrusion detection is the investigation process of information about the system activities or its data to detect any malicious behavior or unauthorized activity.Most of the IDS implement K-means clustering technique due to its linear complexity and fast computing ability.Nonetheless,it is Naïve use of the mean data value for the cluster core that presents a major drawback.The chances of two circular clusters having different radius and centering at the same mean will occur.This condition cannot be addressed by the K-means algorithm because the mean value of the various clusters is very similar together.However,if the clusters are not spherical,it fails.To overcome this issue,a new integrated hybrid model by integrating expectation maximizing(EM)clustering using a Gaussian mixture model(GMM)and naïve Bays classifier have been proposed.In this model,GMM give more flexibility than K-Means in terms of cluster covariance.Also,they use probabilities function and soft clustering,that’s why they can have multiple cluster for a single data.In GMM,we can define the cluster form in GMM by two parameters:the mean and the standard deviation.This means that by using these two parameters,the cluster can take any kind of elliptical shape.EM-GMM will be used to cluster data based on data activity into the corresponding category. 展开更多
关键词 Anomaly detection clustering EM classification Expectation maximization(EM) gaussian mixture model(gmm) gmm classification Intrusion detection Naïve Bayes classification
下载PDF
基于PCA和GMM的宽带网络流量异常检测方法
13
作者 周永博 《通信电源技术》 2024年第15期192-194,共3页
随着网络规模和复杂度的不断提升,宽带网络流量异常检测成为保障网络稳定运行的关键。文章研究一种基于主成分分析(Principal Component Analysis,PCA)和高斯混合模型(Gaussian Mixture Model,GMM)的宽带网络流量异常检测方法。首先,利... 随着网络规模和复杂度的不断提升,宽带网络流量异常检测成为保障网络稳定运行的关键。文章研究一种基于主成分分析(Principal Component Analysis,PCA)和高斯混合模型(Gaussian Mixture Model,GMM)的宽带网络流量异常检测方法。首先,利用PCA技术对网络流量数据进行特征提取与降维处理,以降低数据的维度和复杂性;其次,采用GMM对降维后的数据进行分类;最后,使用KDD 99数据集对所提方法进行测试。实验表明,该方法能够有效检测宽带网络中的异常流量,具有较高的适应性和稳定性。 展开更多
关键词 主成分分析(PCA) 高斯混合模型(gmm) 网络流量 异常检测
下载PDF
多维GMM与邻域约束的多光谱机载LiDAR数据城市地物分类 被引量:2
14
作者 王丽英 吴际 +2 位作者 有泽 李玉 CAMARA Mahamadou 《测绘学报》 EI CSCD 北大核心 2023年第3期419-431,共13页
如何充分利用空间位置及多光谱信息完整、准确地区分各类地物是多光谱机载激光雷达点云应用的重要前提。传统的基于点的分类算法受点云无法明晰表达拓扑及邻域信息的局限导致算法设计困难、执行效率低,而将点云插值为图像的分类算法则... 如何充分利用空间位置及多光谱信息完整、准确地区分各类地物是多光谱机载激光雷达点云应用的重要前提。传统的基于点的分类算法受点云无法明晰表达拓扑及邻域信息的局限导致算法设计困难、执行效率低,而将点云插值为图像的分类算法则受图像存在信息及精度损失的局限导致分类精度较低。另外,点云和图像两种结构均无法直接表达地物的三维几何形体,不利于地物三维建模及分析。为此,本文提出了一种多维高斯混合模型(Gauss mixture model,GMM)与邻域约束的多光谱机载LiDAR城区地物分类算法。该算法首先以无损且明晰表达邻域信息为原则将多光谱LiDAR数据体素化为多值虚拟体素结构,其中,虚拟体素为体素与其内激光点的联合体,虚拟体素值是由体素内激光点的多波段光谱、高程、局部法向量分布及点密度等特征构成的特征矢量。然后,构建模糊聚类模型对多值虚拟体素结构进行分割,获得各虚拟体素的模糊隶属度矩阵。其中,特征空间地物呈现的多峰分布用多维GMM拟合,从而建立标号场,并将多维GMM的概率分布作为非相似性测度;标号场中相邻体素类别的空间相关性用隐马尔可夫随机场模型建模,从而建立邻域约束下的先验概率,并将其作为控制聚类尺度的参数;采用附有规则化项的目标函数解决聚类尺度敏感问题。最后,对隶属度矩阵进行反模糊化确定分类结果。采用Optech Titan实测的不同场景的、不同数据量的多光谱机载LiDAR数据定量评价本文算法的有效性和可行性。试验结果表明,本文算法的平均总体精度可达91.32%、Kappa系数可达0.872,可有效实现对城市各类地物的分类;本文算法综合利用了地物的辐射、空间及几何一致性信息,扩大了信息利用种类,为多光谱机载LiDAR数据的空间位置及多光谱信息的综合利用提供了可行方案。 展开更多
关键词 多光谱机载激光雷达 虚拟体素 体素模型 隐马尔可夫随机场 多维高斯混合模型 模糊聚类
下载PDF
基于GMM-DBC的CSI室内定位算法 被引量:1
15
作者 李新春 李莹 《全球定位系统》 CSCD 2023年第1期117-124,共8页
针对贝叶斯室内定位技术存在定位精度低及时间复杂度较高的问题,提出了一种基于高斯混合模型和密度聚类(GMM-DBC)的信道状态信息(CSI)定位算法.通过对分模型参数的初次估计构建GMM概率分布模型并进行误差计算;引入确定分模型个数(DSM)策... 针对贝叶斯室内定位技术存在定位精度低及时间复杂度较高的问题,提出了一种基于高斯混合模型和密度聚类(GMM-DBC)的信道状态信息(CSI)定位算法.通过对分模型参数的初次估计构建GMM概率分布模型并进行误差计算;引入确定分模型个数(DSM)策略,结合误差计算结果更新GMM模型参数,减小由模型精度引起的定位误差;基于不同参考点的分布特征,判断参考点间紧密程度,将紧密相连的参考点划为一类,减小搜索范围,降低时间复杂度;根据分簇结果,利用改进的贝叶斯概率算法进行权值计算,得到最终定位结果.实验结果表明:所提算法能较好地提高定位精度,降低时间复杂度. 展开更多
关键词 室内定位 信道状态信息(CSI) 贝叶斯概率算法 高斯混合模型 密度聚类(DBC)
下载PDF
Semantic image annotation based on GMM and random walk model 被引量:1
16
作者 田东平 《High Technology Letters》 EI CAS 2017年第2期221-228,共8页
Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk... Automatic image annotation has been an active topic of research in computer vision and pattern recognition for decades.A two stage automatic image annotation method based on Gaussian mixture model(GMM) and random walk model(abbreviated as GMM-RW) is presented.To start with,GMM fitted by the rival penalized expectation maximization(RPEM) algorithm is employed to estimate the posterior probabilities of each annotation keyword.Subsequently,a random walk process over the constructed label similarity graph is implemented to further mine the potential correlations of the candidate annotations so as to capture the refining results,which plays a crucial role in semantic based image retrieval.The contributions exhibited in this work are multifold.First,GMM is exploited to capture the initial semantic annotations,especially the RPEM algorithm is utilized to train the model that can determine the number of components in GMM automatically.Second,a label similarity graph is constructed by a weighted linear combination of label similarity and visual similarity of images associated with the corresponding labels,which is able to avoid the phenomena of polysemy and synonym efficiently during the image annotation process.Third,the random walk is implemented over the constructed label graph to further refine the candidate set of annotations generated by GMM.Conducted experiments on the standard Corel5 k demonstrate that GMM-RW is significantly more effective than several state-of-the-arts regarding their effectiveness and efficiency in the task of automatic image annotation. 展开更多
关键词 semantic image annotation gaussian mixture model gmm random walk rival penalized expectation maximization (RPEM) image retrieval
下载PDF
基于GMM聚类的铁路网络数据风险等级分类方法 被引量:1
17
作者 商婧 王佳宁 +2 位作者 刘旭 李琪 王健 《铁路计算机应用》 2023年第11期39-44,共6页
铁路行业信息基础设施及重要信息系统产生的数据种类繁多、数量庞大且价值密度高,而不同类型或等级的铁路网络数据存在不同级别的安全风险。为了完善铁路网络数据风险评估机制,设计一种基于高斯混合模型(GMM,Gaussian Mixture Model)聚... 铁路行业信息基础设施及重要信息系统产生的数据种类繁多、数量庞大且价值密度高,而不同类型或等级的铁路网络数据存在不同级别的安全风险。为了完善铁路网络数据风险评估机制,设计一种基于高斯混合模型(GMM,Gaussian Mixture Model)聚类的铁路网络数据风险等级分类方法。从数据和风险角度提取关键信息,构建风险信息数据集;通过K-means聚类获得初始聚类中心;基于混合距离计算进行GMM聚类,实现数据风险等级划分。经实验验证,与传统K-means聚类、谱聚类算法相比,GMM聚类算法对铁路网络数据的聚类效果更优,能够更加准确地对铁路网络数据进行风险等级分类,从而为进一步落实铁路网络数据安全管理要求提供重要的技术支撑。 展开更多
关键词 高斯混合模型(gmm)聚类 K-MEANS聚类 最大期望(EM)算法 铁路网络 数据风险 风险等级分类
下载PDF
DSP-TMM:A Robust Cluster Analysis Method Based on Diversity Self-Paced T-Mixture Model
18
作者 Limin Pan Xiaonan Qin Senlin Luo 《Journal of Beijing Institute of Technology》 EI CAS 2020年第4期531-543,共13页
In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of cl... In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of clustering,a robust cluster analysis method is proposed which is based on the diversity self-paced t-mixture model.This model firstly adopts the t-distribution as the submodel which tail is easily controllable.On this basis,it utilizes the entropy penalty expectation conditional maximal algorithm as a pre-clustering step to estimate the initial parameters.After that,this model introduces l2,1-norm as a self-paced regularization term and developes a new ECM optimization algorithm,in order to select high confidence samples from each component in training.Finally,experimental results on several real-world datasets in different noise environments show that the diversity self-paced t-mixture model outperforms the state-of-the-art clustering methods.It provides significant guidance for the construction of the robust mixture distribution model. 展开更多
关键词 cluster analysis gaussian mixture model t-distribution mixture model self-paced learning INITIALIZATION
下载PDF
MODELING INTRAPERSONAL DEFORMATION SUBSPACE USING GMM FOR PALMPRINT IDENTIFICATION
19
作者 Li Qiang Qiu Zhengding Sun Dongmei 《Journal of Electronics(China)》 2006年第4期543-548,共6页
In this paper, an efficient model of palmprint identification is presented based on subspace density estimation using Gaussian Mixture Model (GMM). While a few training samples are available for each person, we use in... In this paper, an efficient model of palmprint identification is presented based on subspace density estimation using Gaussian Mixture Model (GMM). While a few training samples are available for each person, we use intrapersonal palmprint deformations to train the global GMM instead of modeling GMMs for every class. To reduce the dimension of such variations while preserving density function of sample space, Principle Component Analysis (PCA) is used to find the principle differences and form the Intrapersonal Deformation Subspace (IDS). After training GMM using Expectation Maximization (EM) algorithm in IDS, a maximum likelihood strategy is carried out to identify a person. Experimental results demonstrate the advantage of our method compared with traditional PCA method and single Gaussian strategy. 展开更多
关键词 Palmprint identification Density estimation gaussian mixture model gmm Principle Component Analysis (PCA) Intrapersonal Deformation Subspace (IDS)
下载PDF
Modeling Methods in Clustering Analysis for Time Series Data
20
作者 Naglaa A. Morad 《Open Journal of Statistics》 2020年第3期565-580,共16页
This paper is concerned about studying modeling-based methods in cluster analysis to classify data elements into clusters and thus dealing with time series in view of this classification to choose the appropriate mixe... This paper is concerned about studying modeling-based methods in cluster analysis to classify data elements into clusters and thus dealing with time series in view of this classification to choose the appropriate mixed model. The mixture-model cluster analysis technique under different covariance structures of the component densities is presented. This model is used to capture the compactness, orientation, shape, and the volume of component clusters in one expert system to handle Gaussian high dimensional heterogeneous data set. To achieve flexibility in currently practiced cluster analysis techniques. The Expectation-Maximization (EM) algorithm is considered to estimate the parameter of the covariance matrix. To judge the goodness of the models, some criteria are used. These criteria are for the covariance matrix produced by the simulation. These models have not been tackled in previous studies. The results showed the superiority criterion ICOMP PEU to other criteria.<span> </span><span>This is in addition to the success of the model based on Gaussian clusters in the prediction by using covariance matrices used in this study. The study also found the possibility of determining the optimal number of clusters by choosing the number of clusters corresponding to lower values </span><span><span><span>for the different criteria used in the study</span></span></span><span><span><span>. 展开更多
关键词 gaussian mixture model-Based clustering (gmmC) The Expectation-Maximization (EM) Algorithm AIC SBC ICOMP PEU
下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部