The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of th...The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of the ether-water solution is used as Gaussian decomposition and seven Gaussian spectral lines are obtained. The center wavelength, the peak intensity and the half peak bandwidth of each Gaussian spectral line are measured, and the multi-peak fitting is made by using Gaussian primitive parameters. The highest and the lowest oscillation energy level differences in the ground state of each Gaussian spectrum are calculated. It is found that there are seven types of luminescent association molecules formed by ether and water molecules in different configurations existed in the solution. The location of each optimum absorption wavelength and the half peak bandwidth of the Gaussian spectral line is different. The energy level difference with the central wavelength of 304 nm attains the maximum value The result can contribute to the study of the molecular association in ether-water solution.展开更多
Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration wa...Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration was used to perform multicomponent migration velocity analysis of PP- and PS-waves. First, PP- and PS-wave Gaussian beam prestack depth migration algorithms that operate on common-offset gathers are presented to extract offsetdomain common-image gathers of PP- and PS-waves. Second, based on the residual moveout equation, the migration velocity fields of P- and S-waves are updated. Depth matching is used to ensure that the depth of the target layers in the PP- and PS-wave migration profiles are consistent, and high-precision P- and S-wave velocities are obtained. Finally, synthetic and field seismic data suggest that the method can be used effectively in multiwave migration velocity analysis.展开更多
A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample ...A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.展开更多
The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring f...The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.展开更多
Gaussian beam expansion based on the aperture field distribution is studied systematically in this paper. The beam series representation for a radiated field and its asymptotic form are derived and applied to aperture...Gaussian beam expansion based on the aperture field distribution is studied systematically in this paper. The beam series representation for a radiated field and its asymptotic form are derived and applied to aperture analysis. Numerical results indicate that this method is able to analyze the radiated field accurately in all zones.展开更多
Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters fo...Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation.展开更多
This paper proposes an associative memory model based on a coupled system of Gaussian maps. A one-dimensional Gaussian map describes a discrete-time dynamical system, and the coupled system of Gaussian maps can genera...This paper proposes an associative memory model based on a coupled system of Gaussian maps. A one-dimensional Gaussian map describes a discrete-time dynamical system, and the coupled system of Gaussian maps can generate various phenomena including asymmetric fixed and periodic points. The Gaussian associative memory can effectively recall one of the stored patterns, which were triggered by an input pattern by associating the asymmetric two-periodic points observed in the coupled system with the binary values of output patterns. To investigate the Gaussian associative memory model, we formed its reduced model and analyzed the bifurcation structure. Pseudo-patterns were observed for the proposed model along with other conventional associative memory models, and the obtained patterns were related to the high-order or quasi-periodic points and the chaotic trajectories. In this paper, the structure of the Gaussian associative memory and its reduced models are introduced as well as the results of the bifurcation analysis are presented. Furthermore, the output sequences obtained from simulation of the recalling process are presented. We discuss the mechanism and the characteristics of the Gaussian associative memory based on the results of the analysis and the simulations conducted.展开更多
With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued no...With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.展开更多
For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component b...For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.展开更多
In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of cl...In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of clustering,a robust cluster analysis method is proposed which is based on the diversity self-paced t-mixture model.This model firstly adopts the t-distribution as the submodel which tail is easily controllable.On this basis,it utilizes the entropy penalty expectation conditional maximal algorithm as a pre-clustering step to estimate the initial parameters.After that,this model introduces l2,1-norm as a self-paced regularization term and developes a new ECM optimization algorithm,in order to select high confidence samples from each component in training.Finally,experimental results on several real-world datasets in different noise environments show that the diversity self-paced t-mixture model outperforms the state-of-the-art clustering methods.It provides significant guidance for the construction of the robust mixture distribution model.展开更多
Determination of an age in a particular tree species can be considered as a vital factor in forest management.In this research we have introduced a novel scheme to determine the accurate age of the tree species in Sri...Determination of an age in a particular tree species can be considered as a vital factor in forest management.In this research we have introduced a novel scheme to determine the accurate age of the tree species in Sri Lanka.This is initially developed for the tree species called‘Hora’(Dipterocarpus zeylanicus)in wet zone of Sri Lanka.Here the core samples are extracted and further analyzed by means of the different image processing techniques such as Gaussian kernel blurring,use of Sobel filters,double threshold analysis,Hough line tran sformation and etc.The operations such as rescaling,slicing and measuring are also used in line with image processing techniques to achieve the desired results.Ultimately a Graphical user interface(GUI)is developed to cater for the user requirements in a user friendly environment.It has been found that the average growth ring identification accuracy of the proposed system is 93%and the overall average accuracy of detecting the age is 81%.Ultimately the proposed system will provide an insight and contributes to the forestry related activities and researches in Sri Lanka.展开更多
The semi-classical model is used to simulate the three-dimensional trajectory and deposition distribution of the chromium atoms in the Gaussian laser standing wave field using the Runge-Kutta method, and then the thre...The semi-classical model is used to simulate the three-dimensional trajectory and deposition distribution of the chromium atoms in the Gaussian laser standing wave field using the Runge-Kutta method, and then the three-dimensional deposition stripes are also given, besides, the effects of atomic beam divergence, chromatic aberration and spherical aberration on deposition structure are also analyzed.展开更多
Light Detection And Ranging (LiDAR) is a well-established active remote sensing technology that can provide accurate digital elevation measurements for the terrain and non-ground objects such as vegetations and buildi...Light Detection And Ranging (LiDAR) is a well-established active remote sensing technology that can provide accurate digital elevation measurements for the terrain and non-ground objects such as vegetations and buildings, etc. Non-ground objects need to be removed for creation of a Digital Terrain Model (DTM) which is a continuous surface representing only ground surface points. This study aimed at comparative analysis of three main filtering approaches for stripping off non-ground objects namely;Gaussian low pass filter, focal analysis mean filter and DTM slope-based filter of varying window sizes in creation of a reliable DTM from airborne LiDAR point clouds. A sample of LiDAR data provided by the ISPRS WG III/4 captured at Vaihingen in Germany over a pure residential area has been used in the analysis. Visual analysis has indicated that Gaussian low pass filter has given blurred DTMs of attenuated high-frequency objects and emphasized low-frequency objects while it has achieved improved removal of non-ground object at larger window sizes. Focal analysis mean filter has shown better removal of nonground objects compared to Gaussian low pass filter especially at large window sizes where details of non-ground objects almost have diminished in the DTMs from window sizes of 25 × 25 and greater. DTM slope-based filter has created bare earth models that have been full of gabs at the positions of the non-ground objects where the sizes and numbers of that gabs have increased with increasing the window sizes of filter. Those gaps have been closed through exploitation of the spline interpolation method in order to get continuous surface representing bare earth landscape. Comparative analysis has shown that the minimum elevations of the DTMs increase with increasing the filter widow sizes till 21 × 21 and 31 × 31 for the Gaussian low pass filter and the focal analysis mean filter respectively. On the other hand, the DTM slope-based filter has kept the minimum elevation of the original data, that could be due to noise in the LiDAR data unchanged. Alternatively, the three approaches have produced DTMs of decreasing maximum elevation values and consequently decreasing ranges of elevations due to increases in the filter window sizes. Moreover, the standard deviations of the created DTMs from the three filters have decreased with increasing the filter window sizes however, the decreases have been continuous and steady in the cases of the Gaussian low pass filter and the focal analysis mean filters while in the case of the DTM slope-based filter the standard deviations of the created DTMs have decreased with high rates till window size of 31 × 31 then they have kept unchanged due to more increases in the filter window sizes.展开更多
The Bjorck and Pereyra algorithms used for solving Vandermonde systemof equation are modified for the case where the points are symmetricly situated aroundzero. The working operation is saved about half. A forward err...The Bjorck and Pereyra algorithms used for solving Vandermonde systemof equation are modified for the case where the points are symmetricly situated aroundzero. The working operation is saved about half. A forward error analysis is presentedfor the modified algorithms, and it's shown that if the points are situated in some order,the error bound are as good as Higham's result in 1987.展开更多
A class of rapid algorithms for independent component analysis (ICA) is presented. This method utilizes multi-step past information with respect to an existing fixed-point style for increasing the non-Gaussianity. Thi...A class of rapid algorithms for independent component analysis (ICA) is presented. This method utilizes multi-step past information with respect to an existing fixed-point style for increasing the non-Gaussianity. This can be viewed as the addition of a variable-size momentum term. The use of past information comes from the idea of surrogate optimization. There is little additional cost for either software design or runtime execution when past information is included. The speed of the algorithm is evaluated on both simulated and real-world data. The real-world data includes color images and electroencephalograms (EEGs), which are an important source of data on human-computer interactions. From these experiments, it is found that the method we present here, the RapidICA, performs quickly, especially for the demixing of super-Gaussian signals.展开更多
Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM ...Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.展开更多
基金Supported by the Natural Science Foundation of Jiangsu Province(BK2007204)the Natural Sci-ence Foundation of Educational Department of Jiangsu Province(07KJD140208)~~
文摘The fluorescence spectrum of the ether-water solution excited by the ultraviolet light with the wavelength of 245 nm is experimentally detected. Based on the second derivative analysis, the fluorescence spectrum of the ether-water solution is used as Gaussian decomposition and seven Gaussian spectral lines are obtained. The center wavelength, the peak intensity and the half peak bandwidth of each Gaussian spectral line are measured, and the multi-peak fitting is made by using Gaussian primitive parameters. The highest and the lowest oscillation energy level differences in the ground state of each Gaussian spectrum are calculated. It is found that there are seven types of luminescent association molecules formed by ether and water molecules in different configurations existed in the solution. The location of each optimum absorption wavelength and the half peak bandwidth of the Gaussian spectral line is different. The energy level difference with the central wavelength of 304 nm attains the maximum value The result can contribute to the study of the molecular association in ether-water solution.
基金supported by the National Special Fund of China(No.2011ZX05035-001-006HZ,2011ZX05008-006-22,2011ZX05049-01-02,and 2011ZX05019-003)the National Natural Science Foundation of China(No.41104084)the PetroChina Innovation Foundation(No.2011D-5006-0303)
文摘Prestack depth migration of multicomponent seismic data improves the imaging accuracy of subsurface complex geological structures. An accurate velocity field is critical to accurate imaging. Gaussian beam migration was used to perform multicomponent migration velocity analysis of PP- and PS-waves. First, PP- and PS-wave Gaussian beam prestack depth migration algorithms that operate on common-offset gathers are presented to extract offsetdomain common-image gathers of PP- and PS-waves. Second, based on the residual moveout equation, the migration velocity fields of P- and S-waves are updated. Depth matching is used to ensure that the depth of the target layers in the PP- and PS-wave migration profiles are consistent, and high-precision P- and S-wave velocities are obtained. Finally, synthetic and field seismic data suggest that the method can be used effectively in multiwave migration velocity analysis.
文摘A new method for quantitative phase analysis is proposed by using X-ray diffraction multi-peak match intensity ratio. This method can obtain the multi-peak match intensity ratio among each phase in the mixture sample by using all diffraction peak data in the mixture sample X-ray diffraction spectrum and combining the relative intensity distribution data of each phase standard peak in JCPDS card to carry on the least square method regression analysis. It is benefit to improve the precision of quantitative phase analysis that the given single line ratio which is usually adopted is taken the place of the multi-peak match intensity ratio and is used in X-ray diffraction quantitative phase analysis of the mixture sample. By analyzing four-group mixture sample, adopting multi-peak match intensity ratio and X-ray diffraction quantitative phase analysis principle of combining the adiabatic and matrix flushing method, it is tested that the experimental results are identical with theory.
基金supported by the National Natural Science Foundation of China (61903326, 61933015)。
文摘The large blast furnace is essential equipment in the process of iron and steel manufacturing. Due to the complex operation process and frequent fluctuations of variables, conventional monitoring methods often bring false alarms. To address the above problem, an ensemble of greedy dynamic principal component analysis-Gaussian mixture model(EGDPCA-GMM) is proposed in this paper. First, PCA-GMM is introduced to deal with the collinearity and the non-Gaussian distribution of blast furnace data.Second, in order to explain the dynamics of data, the greedy algorithm is used to determine the extended variables and their corresponding time lags, so as to avoid introducing unnecessary noise. Then the bagging ensemble is adopted to cooperate with greedy extension to eliminate the randomness brought by the greedy algorithm and further reduce the false alarm rate(FAR) of monitoring results. Finally, the algorithm is applied to the blast furnace of a large iron and steel group in South China to verify performance.Compared with the basic algorithms, the proposed method achieves lowest FAR, while keeping missed alarm rate(MAR) remain stable.
文摘Gaussian beam expansion based on the aperture field distribution is studied systematically in this paper. The beam series representation for a radiated field and its asymptotic form are derived and applied to aperture analysis. Numerical results indicate that this method is able to analyze the radiated field accurately in all zones.
基金Supported by the National High Technology Research and Development Program of China (863 Program,No.2006AA010102)
文摘Voice conversion algorithm aims to provide high level of similarity to the target voice with an acceptable level of quality.The main object of this paper was to build a nonlinear relationship between the parameters for the acoustical features of source and target speaker using Non-Linear Canonical Correlation Analysis(NLCCA) based on jointed Gaussian mixture model.Speaker indi-viduality transformation was achieved mainly by altering vocal tract characteristics represented by Line Spectral Frequencies(LSF).To obtain the transformed speech which sounded more like the target voices,prosody modification is involved through residual prediction.Both objective and subjective evaluations were conducted.The experimental results demonstrated that our proposed algorithm was effective and outperformed the conventional conversion method utilized by the Minimum Mean Square Error(MMSE) estimation.
文摘This paper proposes an associative memory model based on a coupled system of Gaussian maps. A one-dimensional Gaussian map describes a discrete-time dynamical system, and the coupled system of Gaussian maps can generate various phenomena including asymmetric fixed and periodic points. The Gaussian associative memory can effectively recall one of the stored patterns, which were triggered by an input pattern by associating the asymmetric two-periodic points observed in the coupled system with the binary values of output patterns. To investigate the Gaussian associative memory model, we formed its reduced model and analyzed the bifurcation structure. Pseudo-patterns were observed for the proposed model along with other conventional associative memory models, and the obtained patterns were related to the high-order or quasi-periodic points and the chaotic trajectories. In this paper, the structure of the Gaussian associative memory and its reduced models are introduced as well as the results of the bifurcation analysis are presented. Furthermore, the output sequences obtained from simulation of the recalling process are presented. We discuss the mechanism and the characteristics of the Gaussian associative memory based on the results of the analysis and the simulations conducted.
基金supported by the National Natural Science Foundation of China(6100115361271415+4 种基金6140149961531015)the Fundamental Research Funds for the Central Universities(3102014JCQ010103102014ZD0041)the Opening Research Foundation of State Key Laboratory of Underwater Information Processing and Control(9140C231002130C23085)
文摘With the vigorous expansion of nonlinear adaptive filtering with real-valued kernel functions,its counterpart complex kernel adaptive filtering algorithms were also sequentially proposed to solve the complex-valued nonlinear problems arising in almost all real-world applications.This paper firstly presents two schemes of the complex Gaussian kernel-based adaptive filtering algorithms to illustrate their respective characteristics.Then the theoretical convergence behavior of the complex Gaussian kernel least mean square(LMS) algorithm is studied by using the fixed dictionary strategy.The simulation results demonstrate that the theoretical curves predicted by the derived analytical models consistently coincide with the Monte Carlo simulation results in both transient and steady-state stages for two introduced complex Gaussian kernel LMS algonthms using non-circular complex data.The analytical models are able to be regard as a theoretical tool evaluating ability and allow to compare with mean square error(MSE) performance among of complex kernel LMS(KLMS) methods according to the specified kernel bandwidth and the length of dictionary.
基金National Natural Science Foundation of China(61673279)。
文摘For plant-wide processes with multiple operating conditions,the multimode feature imposes some challenges to conventional monitoring techniques.Hence,to solve this problem,this paper provides a novel local component based principal component analysis(LCPCA)approach for monitoring the status of a multimode process.In LCPCA,the process prior knowledge of mode division is not required and it purely based on the process data.Firstly,LCPCA divides the processes data into multiple local components using finite Gaussian mixture model mixture(FGMM).Then,calculating the posterior probability is applied to determine each sample belonging to which local component.After that,the local component information(such as mean and standard deviation)is used to standardize each sample of local component.Finally,the standardized samples of each local component are combined to train PCA monitoring model.Based on the PCA monitoring model,two monitoring statistics T^(2) and SPE are used for monitoring multimode processes.Through a numerical example and the Tennessee Eastman(TE)process,the monitoring result demonstrates that LCPCA outperformed conventional PCA and LNS-PCA in the fault detection rate.
基金Supported by the 13th 5-Year National Science and Technology Supporting Project(2018YFC2000302)。
文摘In order to implement the robust cluster analysis,solve the problem that the outliers in the data will have a serious disturbance to the probability density parameter estimation,and therefore affect the accuracy of clustering,a robust cluster analysis method is proposed which is based on the diversity self-paced t-mixture model.This model firstly adopts the t-distribution as the submodel which tail is easily controllable.On this basis,it utilizes the entropy penalty expectation conditional maximal algorithm as a pre-clustering step to estimate the initial parameters.After that,this model introduces l2,1-norm as a self-paced regularization term and developes a new ECM optimization algorithm,in order to select high confidence samples from each component in training.Finally,experimental results on several real-world datasets in different noise environments show that the diversity self-paced t-mixture model outperforms the state-of-the-art clustering methods.It provides significant guidance for the construction of the robust mixture distribution model.
文摘Determination of an age in a particular tree species can be considered as a vital factor in forest management.In this research we have introduced a novel scheme to determine the accurate age of the tree species in Sri Lanka.This is initially developed for the tree species called‘Hora’(Dipterocarpus zeylanicus)in wet zone of Sri Lanka.Here the core samples are extracted and further analyzed by means of the different image processing techniques such as Gaussian kernel blurring,use of Sobel filters,double threshold analysis,Hough line tran sformation and etc.The operations such as rescaling,slicing and measuring are also used in line with image processing techniques to achieve the desired results.Ultimately a Graphical user interface(GUI)is developed to cater for the user requirements in a user friendly environment.It has been found that the average growth ring identification accuracy of the proposed system is 93%and the overall average accuracy of detecting the age is 81%.Ultimately the proposed system will provide an insight and contributes to the forestry related activities and researches in Sri Lanka.
文摘The semi-classical model is used to simulate the three-dimensional trajectory and deposition distribution of the chromium atoms in the Gaussian laser standing wave field using the Runge-Kutta method, and then the three-dimensional deposition stripes are also given, besides, the effects of atomic beam divergence, chromatic aberration and spherical aberration on deposition structure are also analyzed.
文摘Light Detection And Ranging (LiDAR) is a well-established active remote sensing technology that can provide accurate digital elevation measurements for the terrain and non-ground objects such as vegetations and buildings, etc. Non-ground objects need to be removed for creation of a Digital Terrain Model (DTM) which is a continuous surface representing only ground surface points. This study aimed at comparative analysis of three main filtering approaches for stripping off non-ground objects namely;Gaussian low pass filter, focal analysis mean filter and DTM slope-based filter of varying window sizes in creation of a reliable DTM from airborne LiDAR point clouds. A sample of LiDAR data provided by the ISPRS WG III/4 captured at Vaihingen in Germany over a pure residential area has been used in the analysis. Visual analysis has indicated that Gaussian low pass filter has given blurred DTMs of attenuated high-frequency objects and emphasized low-frequency objects while it has achieved improved removal of non-ground object at larger window sizes. Focal analysis mean filter has shown better removal of nonground objects compared to Gaussian low pass filter especially at large window sizes where details of non-ground objects almost have diminished in the DTMs from window sizes of 25 × 25 and greater. DTM slope-based filter has created bare earth models that have been full of gabs at the positions of the non-ground objects where the sizes and numbers of that gabs have increased with increasing the window sizes of filter. Those gaps have been closed through exploitation of the spline interpolation method in order to get continuous surface representing bare earth landscape. Comparative analysis has shown that the minimum elevations of the DTMs increase with increasing the filter widow sizes till 21 × 21 and 31 × 31 for the Gaussian low pass filter and the focal analysis mean filter respectively. On the other hand, the DTM slope-based filter has kept the minimum elevation of the original data, that could be due to noise in the LiDAR data unchanged. Alternatively, the three approaches have produced DTMs of decreasing maximum elevation values and consequently decreasing ranges of elevations due to increases in the filter window sizes. Moreover, the standard deviations of the created DTMs from the three filters have decreased with increasing the filter window sizes however, the decreases have been continuous and steady in the cases of the Gaussian low pass filter and the focal analysis mean filters while in the case of the DTM slope-based filter the standard deviations of the created DTMs have decreased with high rates till window size of 31 × 31 then they have kept unchanged due to more increases in the filter window sizes.
基金Supported by National Natural Science Foundation of China,under Grant Number 60175008.and Natural Science Foundation of Fujian Province under Grant A0110004.
文摘The Bjorck and Pereyra algorithms used for solving Vandermonde systemof equation are modified for the case where the points are symmetricly situated aroundzero. The working operation is saved about half. A forward error analysis is presentedfor the modified algorithms, and it's shown that if the points are situated in some order,the error bound are as good as Higham's result in 1987.
文摘A class of rapid algorithms for independent component analysis (ICA) is presented. This method utilizes multi-step past information with respect to an existing fixed-point style for increasing the non-Gaussianity. This can be viewed as the addition of a variable-size momentum term. The use of past information comes from the idea of surrogate optimization. There is little additional cost for either software design or runtime execution when past information is included. The speed of the algorithm is evaluated on both simulated and real-world data. The real-world data includes color images and electroencephalograms (EEGs), which are an important source of data on human-computer interactions. From these experiments, it is found that the method we present here, the RapidICA, performs quickly, especially for the demixing of super-Gaussian signals.
基金The US National Science Foundation (No. CMMI-0408390,CMMI-0644552)the American Chemical Society Petroleum Research Foundation (No.PRF-44468-G9)+3 种基金the Research Fellowship for International Young Scientists (No.51050110143)the Fok Ying-Tong Education Foundation (No.114024)the Natural Science Foundation of Jiangsu Province (No.BK2009015)the Postdoctoral Science Foundation of Jiangsu Province (No.0901005C)
文摘Based on Gaussian mixture models(GMM), speed, flow and occupancy are used together in the cluster analysis of traffic flow data. Compared with other clustering and sorting techniques, as a structural model, the GMM is suitable for various kinds of traffic flow parameters. Gap statistics and domain knowledge of traffic flow are used to determine a proper number of clusters. The expectation-maximization (E-M) algorithm is used to estimate parameters of the GMM model. The clustered traffic flow pattems are then analyzed statistically and utilized for designing maximum likelihood classifiers for grouping real-time traffic flow data when new observations become available. Clustering analysis and pattern recognition can also be used to cluster and classify dynamic traffic flow patterns for freeway on-ramp and off-ramp weaving sections as well as for other facilities or things involving the concept of level of service, such as airports, parking lots, intersections, interrupted-flow pedestrian facilities, etc.