Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the ...Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the nuclear binding energies are modeled directly using a machine-learning method called the Gaussian process. First, the binding energies for 2238 nuclei with Z > 20 and N > 20 are calculated using the Gaussian process in a physically motivated feature space, yielding an average deviation of 0.046 MeV and a standard deviation of 0.066 MeV. The results show the good learning ability of the Gaussian process in the studies of binding energies. Then, the predictive power of the Gaussian process is studied by calculating the binding energies for 108 nuclei newly included in AME2020. The theoretical results are in good agreement with the experimental data, reflecting the good predictive power of the Gaussian process. Moreover, the α-decay energies for 1169 nuclei with 50 ≤ Z ≤ 110 are derived from the theoretical binding energies calculated using the Gaussian process. The average deviation and the standard deviation are, respectively, 0.047 MeV and 0.070 MeV. Noticeably, the calculated α-decay energies for the two new isotopes ^ (204 )Ac(Huang et al. Phys Lett B 834, 137484(2022)) and ^ (207) Th(Yang et al. Phys Rev C 105, L051302(2022)) agree well with the latest experimental data. These results demonstrate that the Gaussian process is reliable for the calculations of nuclear binding energies. Finally, the α-decay properties of some unknown actinide nuclei are predicted using the Gaussian process. The predicted results can be useful guides for future research on binding energies and α-decay properties.展开更多
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust...Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.展开更多
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi...The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems.展开更多
The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ...The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability.展开更多
It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integr...It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity.展开更多
In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the ...In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.展开更多
The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR...The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR) approach is developed for the quality prediction of nonlinear and multiphase batch processes. After the collected data is preprocessed through batchwise unfolding, the hidden Markov model (HMM) is applied to identify different operation phases. A GLDA algorithm is also presented to extract the appropriate process variables highly correlated with the quality variables, decreasing the complexity of modeling. Besides, the multiple local GPR models are built in the reduced- dimensional space for all the identified operation phases. Furthermore, the HMM-based state estimation is used to classify each measurement sample of a test batch into a corresponding phase with the maximal likelihood estimation. Therefore, the local GPR model with respect to specific phase is selected for online prediction. The effectiveness of the proposed prediction approach is demonstrated through the multiphase penicillin fermentation process. The comparison results show that the proposed GLDA-GPR approach is superior to the regular GPR model and the GPR based on HMM (HMM-GPR) model.展开更多
Many black box functions and datasets have regions of different variability. Models such as the Gaussian process may fall short in giving the best representation of these complex functions. One successful approach for...Many black box functions and datasets have regions of different variability. Models such as the Gaussian process may fall short in giving the best representation of these complex functions. One successful approach for modeling this type of nonstationarity is the Treed Gaussian process <span style="font-family:Verdana;">[1]</span><span></span><span><span></span></span><span style="font-family:Verdana;">, which extended the Gaussian process by dividing the input space into different regions using a binary tree algorithm. Each region became its own Gaussian process. This iterative inference process formed many different trees and thus, many different Gaussian processes. In the end these were combined to get a posterior predictive distribution at each point. The idea was that when the iterations were combined, smoothing would take place for the surface of the predicted points near tree boundaries. We introduce the Improved Treed Gaussian process, which divides the input space into a single main binary tree where the different tree regions have different variability. The parameters for the Gaussian process for each tree region are then determined. These parameters are then smoothed at the region boundaries. This smoothing leads to a set of parameters for each point in the input space that specify the covariance matrix used to predict the point. The advantage is that the prediction and actual errors are estimated better since the standard deviation and range parameters of each point are related to the variation of the region it is in. Further, smoothing between regions is better since each point prediction uses its parameters over the whole input space. Examples are given in this paper which show these advantages for lower-dimensional problems.</span>展开更多
Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples acco...Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee mactnne is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemical processes.展开更多
High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important...High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method.展开更多
A novel model named Multi-scale Gaussian Processes (MGP) is proposed. Motivated by the ideas of multi-scale representations in the wavelet theory, in the new model, a Gaussian process is represented at a scale by a li...A novel model named Multi-scale Gaussian Processes (MGP) is proposed. Motivated by the ideas of multi-scale representations in the wavelet theory, in the new model, a Gaussian process is represented at a scale by a linear basis that is composed of a scale function and its different translations. Finally the distribution of the targets of the given samples can be obtained at different scales. Compared with the standard Gaussian Processes (GP) model, the MGP model can control its complexity conveniently just by adjusting the scale pa-rameter. So it can trade-off the generalization ability and the empirical risk rapidly. Experiments verify the fea-sibility of the MGP model, and exhibit that its performance is superior to the GP model if appropriate scales are chosen.展开更多
Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance o...Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance of Gaussian process model.However,the common-used algorithm has the disadvantages of difficult determination of iteration steps,over-dependence of optimization effect on initial values,and easily falling into local optimum.To solve this problem,a method combining the Gaussian process with memetic algorithm was proposed.Based on this method,memetic algorithm was used to search the optimal hyper parameters of Gaussian process regression(GPR)model in the training process and form MA-GPR algorithms,and then the model was used to predict and test the results.When used in the marine long-range precision strike system(LPSS)battle effectiveness evaluation,the proposed MA-GPR model significantly improved the prediction accuracy,compared with the conjugate gradient method and the genetic algorithm optimization process.展开更多
In order to meet the demand of online optimal running, a novel soft sensor modeling approach based on Gaussian processes was proposed. The approach is moderately simple to implement and use without loss of performance...In order to meet the demand of online optimal running, a novel soft sensor modeling approach based on Gaussian processes was proposed. The approach is moderately simple to implement and use without loss of performance. It is trained by optimizing the hyperparameters using the scaled conjugate gradient algorithm with the squared exponential covariance function employed. Experimental simulations show that the soft sensor modeling approach has the advantage via a real-world example in a refinery. Meanwhile, the method opens new possibilities for application of kernel methods to potential fields.展开更多
The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provid...The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provide an initial or boundary field for higher-resolution regional ocean models.However,traditional interpolation methods(nearest neighbor interpolation,bilinear interpolation,and bicubic interpolation)lack physical constraints and can generate significant errors at land-sea boundaries and around islands.In this paper,a machine learning method is used to design an interpolation algorithm based on Gaussian process regression.The method uses a multiscale kernel function to process two-dimensional space meteorological ocean processes and introduces multiscale physical feature information(sea surface wind stress,sea surface heat flux,and ocean current velocity).This greatly improves the spatial resolution of ocean features and the interpolation accuracy.The eff ectiveness of the algorithm was validated through interpolation experiments relating to sea surface temperature(SST).The root mean square error(RMSE)of the interpolation algorithm was 38.9%,43.7%,and 62.4%lower than that of bilinear interpolation,bicubic interpolation,and nearest neighbor interpolation,respectively.The interpolation accuracy was also significantly better in off shore area and around islands.The algorithm has an acceptable runtime cost and good temporal and spatial generalizability.展开更多
In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in paral...In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm.展开更多
In material modeling,the calculation speed using the empirical potentials is fast compared to the first principle calculations,but the results are not as accurate as of the first principle calculations.First principle...In material modeling,the calculation speed using the empirical potentials is fast compared to the first principle calculations,but the results are not as accurate as of the first principle calculations.First principle calculations are accurate but slow and very expensive to calculate.In this work,first,the H-H binding energy and H2-H2 interaction energy are calculated using the first principle calculations which can be applied to the Tersoff empirical potential.Second,the H-H parameters are estimated.After fitting H-H parameters,the mechanical properties are obtained.Finally,to integrate both the low-fidelity empirical potential data and the data from the high-fidelity firstprinciple calculations,the multi-fidelity Gaussian process regression is employed to predict the HH binding energy and the H2-H2 interaction energy.Numerical results demonstrate the accuracy of the developed empirical potentials.展开更多
The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It au...The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning.展开更多
Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically r...Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically results in a proxy model which is unbounded for all temporal or spacial points,and thus leaves the possibility of taking on infeasible values.We propose an approach to enforce the physical constraints in a probabilistic way under the GP regression framework.In addition,this new approach reduces the variance in the resulting GP model.展开更多
Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard ...Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.展开更多
Gaussian Process Latent Variable Model (GPLVM), as a flexible bayesian non-parametric modeling method, has been extensively studied and applied in many learning tasks such as Intrusion Detection, Image Reconstructio...Gaussian Process Latent Variable Model (GPLVM), as a flexible bayesian non-parametric modeling method, has been extensively studied and applied in many learning tasks such as Intrusion Detection, Image Reconstruction, Facial Expression Recognition, Human pose estimation and so on. In this paper, we give a review and analysis for GPLVM and its extensions. Firstly, we formulate basic GPLVM and discuss its relation to Kernel Principal Components Analysis. Secondly, we summarize its improvements or variants and propose a taxonomy of GPLVM related models in terms of the various strategies that be used. Thirdly, we provide the detailed formulations of the main GPLVMs that extensively developed based on the strategies described in the paper. Finally, we further give some challenges in next researches of GPLVM.展开更多
基金the National Key R&D Program of China(No.2023YFA1606503)the National Natural Science Foundation of China(Nos.12035011,11975167,11947211,11905103,11881240623,and 11961141003).
文摘Reliable calculations of nuclear binding energies are crucial for advancing the research of nuclear physics. Machine learning provides an innovative approach to exploring complex physical problems. In this study, the nuclear binding energies are modeled directly using a machine-learning method called the Gaussian process. First, the binding energies for 2238 nuclei with Z > 20 and N > 20 are calculated using the Gaussian process in a physically motivated feature space, yielding an average deviation of 0.046 MeV and a standard deviation of 0.066 MeV. The results show the good learning ability of the Gaussian process in the studies of binding energies. Then, the predictive power of the Gaussian process is studied by calculating the binding energies for 108 nuclei newly included in AME2020. The theoretical results are in good agreement with the experimental data, reflecting the good predictive power of the Gaussian process. Moreover, the α-decay energies for 1169 nuclei with 50 ≤ Z ≤ 110 are derived from the theoretical binding energies calculated using the Gaussian process. The average deviation and the standard deviation are, respectively, 0.047 MeV and 0.070 MeV. Noticeably, the calculated α-decay energies for the two new isotopes ^ (204 )Ac(Huang et al. Phys Lett B 834, 137484(2022)) and ^ (207) Th(Yang et al. Phys Rev C 105, L051302(2022)) agree well with the latest experimental data. These results demonstrate that the Gaussian process is reliable for the calculations of nuclear binding energies. Finally, the α-decay properties of some unknown actinide nuclei are predicted using the Gaussian process. The predicted results can be useful guides for future research on binding energies and α-decay properties.
基金supported in part by the National Key Research and Development Program of China(2021YFC2902703)the National Natural Science Foundation of China(62173078,61773105,61533007,61873049,61873053,61703085,61374147)。
文摘Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process.
基金supported in part by the National Key Research and Development Program of China(2019YFB1503700)the Hunan Natural Science Foundation-Science and Education Joint Project(2019JJ70063)。
文摘The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems.
基金supported by Fundamental Research Program of Shanxi Province(No.202203021211088)Shanxi Provincial Natural Science Foundation(No.202204021301049).
文摘The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability.
基金support from Shenzhen Municipal Development and Reform Commission(Grant Number:SDRC[2016]172)Shenzhen Science and Technology Program(Grant No.KQTD20170810150821146)Interdisciplinary Research and Innovation Fund of Tsinghua Shenzhen International Graduate School,and Shanghai Shun Feng Machinery Co.,Ltd.
文摘It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity.
基金Natural Science Foundation of Shanghai,China(No.19ZR1402300)。
文摘In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production.
基金The Fundamental Research Funds for the Central Universities(No.JUDCF12027,JUSRP51323B)the Scientific Innovation Research of College Graduates in Jiangsu Province(No.CXLX12_0734)
文摘The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR) approach is developed for the quality prediction of nonlinear and multiphase batch processes. After the collected data is preprocessed through batchwise unfolding, the hidden Markov model (HMM) is applied to identify different operation phases. A GLDA algorithm is also presented to extract the appropriate process variables highly correlated with the quality variables, decreasing the complexity of modeling. Besides, the multiple local GPR models are built in the reduced- dimensional space for all the identified operation phases. Furthermore, the HMM-based state estimation is used to classify each measurement sample of a test batch into a corresponding phase with the maximal likelihood estimation. Therefore, the local GPR model with respect to specific phase is selected for online prediction. The effectiveness of the proposed prediction approach is demonstrated through the multiphase penicillin fermentation process. The comparison results show that the proposed GLDA-GPR approach is superior to the regular GPR model and the GPR based on HMM (HMM-GPR) model.
文摘Many black box functions and datasets have regions of different variability. Models such as the Gaussian process may fall short in giving the best representation of these complex functions. One successful approach for modeling this type of nonstationarity is the Treed Gaussian process <span style="font-family:Verdana;">[1]</span><span></span><span><span></span></span><span style="font-family:Verdana;">, which extended the Gaussian process by dividing the input space into different regions using a binary tree algorithm. Each region became its own Gaussian process. This iterative inference process formed many different trees and thus, many different Gaussian processes. In the end these were combined to get a posterior predictive distribution at each point. The idea was that when the iterations were combined, smoothing would take place for the surface of the predicted points near tree boundaries. We introduce the Improved Treed Gaussian process, which divides the input space into a single main binary tree where the different tree regions have different variability. The parameters for the Gaussian process for each tree region are then determined. These parameters are then smoothed at the region boundaries. This smoothing leads to a set of parameters for each point in the input space that specify the covariance matrix used to predict the point. The advantage is that the prediction and actual errors are estimated better since the standard deviation and range parameters of each point are related to the variation of the region it is in. Further, smoothing between regions is better since each point prediction uses its parameters over the whole input space. Examples are given in this paper which show these advantages for lower-dimensional problems.</span>
基金Supported by the National High Technology Research and Development Program of China (2006AA040309)National BasicResearch Program of China (2007CB714000)
文摘Presented is a multiple model soft sensing method based on Affinity Propagation (AP), Gaussian process (GP) and Bayesian committee machine (BCM). AP clustering arithmetic is used to cluster training samples according to their operating points. Then, the sub-models are estimated by Gaussian Process Regression (GPR). Finally, in order to get a global probabilistic prediction, Bayesian committee mactnne is used to combine the outputs of the sub-estimators. The proposed method has been applied to predict the light naphtha end point in hydrocracker fractionators. Practical applications indicate that it is useful for the online prediction of quality monitoring in chemical processes.
基金supported by the National Natural Science Foundation of China(61873275,61703419,425317829).
文摘High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method.
文摘A novel model named Multi-scale Gaussian Processes (MGP) is proposed. Motivated by the ideas of multi-scale representations in the wavelet theory, in the new model, a Gaussian process is represented at a scale by a linear basis that is composed of a scale function and its different translations. Finally the distribution of the targets of the given samples can be obtained at different scales. Compared with the standard Gaussian Processes (GP) model, the MGP model can control its complexity conveniently just by adjusting the scale pa-rameter. So it can trade-off the generalization ability and the empirical risk rapidly. Experiments verify the fea-sibility of the MGP model, and exhibit that its performance is superior to the GP model if appropriate scales are chosen.
基金Project(513300303)supported by the General Armament Department,China
文摘Gaussian process(GP)has fewer parameters,simple model and output of probabilistic sense,when compared with the methods such as support vector machines.Selection of the hyper-parameters is critical to the performance of Gaussian process model.However,the common-used algorithm has the disadvantages of difficult determination of iteration steps,over-dependence of optimization effect on initial values,and easily falling into local optimum.To solve this problem,a method combining the Gaussian process with memetic algorithm was proposed.Based on this method,memetic algorithm was used to search the optimal hyper parameters of Gaussian process regression(GPR)model in the training process and form MA-GPR algorithms,and then the model was used to predict and test the results.When used in the marine long-range precision strike system(LPSS)battle effectiveness evaluation,the proposed MA-GPR model significantly improved the prediction accuracy,compared with the conjugate gradient method and the genetic algorithm optimization process.
文摘In order to meet the demand of online optimal running, a novel soft sensor modeling approach based on Gaussian processes was proposed. The approach is moderately simple to implement and use without loss of performance. It is trained by optimizing the hyperparameters using the scaled conjugate gradient algorithm with the squared exponential covariance function employed. Experimental simulations show that the soft sensor modeling approach has the advantage via a real-world example in a refinery. Meanwhile, the method opens new possibilities for application of kernel methods to potential fields.
基金Supported by the National Natural Science Foundation of China(Nos.41675097,41375113)。
文摘The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provide an initial or boundary field for higher-resolution regional ocean models.However,traditional interpolation methods(nearest neighbor interpolation,bilinear interpolation,and bicubic interpolation)lack physical constraints and can generate significant errors at land-sea boundaries and around islands.In this paper,a machine learning method is used to design an interpolation algorithm based on Gaussian process regression.The method uses a multiscale kernel function to process two-dimensional space meteorological ocean processes and introduces multiscale physical feature information(sea surface wind stress,sea surface heat flux,and ocean current velocity).This greatly improves the spatial resolution of ocean features and the interpolation accuracy.The eff ectiveness of the algorithm was validated through interpolation experiments relating to sea surface temperature(SST).The root mean square error(RMSE)of the interpolation algorithm was 38.9%,43.7%,and 62.4%lower than that of bilinear interpolation,bicubic interpolation,and nearest neighbor interpolation,respectively.The interpolation accuracy was also significantly better in off shore area and around islands.The algorithm has an acceptable runtime cost and good temporal and spatial generalizability.
基金Project(2009CB320603)supported by the National Basic Research Program of ChinaProject(IRT0712)supported by Program for Changjiang Scholars and Innovative Research Team in University+1 种基金Project(B504)supported by the Shanghai Leading Academic Discipline ProgramProject(61174118)supported by the National Natural Science Foundation of China
文摘In order to reduce the computation of complex problems, a new surrogate-assisted estimation of distribution algorithm with Gaussian process was proposed. Coevolution was used in dual populations which evolved in parallel. The search space was projected into multiple subspaces and searched by sub-populations. Also, the whole space was exploited by the other population which exchanges information with the sub-populations. In order to make the evolutionary course efficient, multivariate Gaussian model and Gaussian mixture model were used in both populations separately to estimate the distribution of individuals and reproduce new generations. For the surrogate model, Gaussian process was combined with the algorithm which predicted variance of the predictions. The results on six benchmark functions show that the new algorithm performs better than other surrogate-model based algorithms and the computation complexity is only 10% of the original estimation of distribution algorithm.
基金We gratefully acknowledge the support from the National Science Foundation of USA(Grants DMS-1555072 and DMS-1736364).
文摘In material modeling,the calculation speed using the empirical potentials is fast compared to the first principle calculations,but the results are not as accurate as of the first principle calculations.First principle calculations are accurate but slow and very expensive to calculate.In this work,first,the H-H binding energy and H2-H2 interaction energy are calculated using the first principle calculations which can be applied to the Tersoff empirical potential.Second,the H-H parameters are estimated.After fitting H-H parameters,the mechanical properties are obtained.Finally,to integrate both the low-fidelity empirical potential data and the data from the high-fidelity firstprinciple calculations,the multi-fidelity Gaussian process regression is employed to predict the HH binding energy and the H2-H2 interaction energy.Numerical results demonstrate the accuracy of the developed empirical potentials.
基金Supported by the National Natural Science Foundation of China under Grant No 60972106the China Postdoctoral Science Foundation under Grant No 2014M561053+1 种基金the Humanity and Social Science Foundation of Ministry of Education of China under Grant No 15YJA630108the Hebei Province Natural Science Foundation under Grant No E2016202341
文摘The contribution of this work is twofold: (1) a multimodality prediction method of chaotic time series with the Gaussian process mixture (GPM) model is proposed, which employs a divide and conquer strategy. It automatically divides the chaotic time series into multiple modalities with different extrinsic patterns and intrinsic characteristics, and thus can more precisely fit the chaotic time series. (2) An effective sparse hard-cut expec- tation maximization (SHC-EM) learning algorithm for the GPM model is proposed to improve the prediction performance. SHO-EM replaces a large learning sample set with fewer pseudo inputs, accelerating model learning based on these pseudo inputs. Experiments on Lorenz and Chua time series demonstrate that the proposed method yields not only accurate multimodality prediction, but also the prediction confidence interval SHC-EM outperforms the traditional variational 1earning in terms of both prediction accuracy and speed. In addition, SHC-EM is more robust and insusceptible to noise than variational learning.
基金supported by Simons Foundationsupported by the U.S. Department of Energy Office of Science, Office of Advanced Scientific Computing Research as part of Physics-Informed Learning Machines for Multiscale and Multiphysics Problems (PhILMs)
文摘Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically results in a proxy model which is unbounded for all temporal or spacial points,and thus leaves the possibility of taking on infeasible values.We propose an approach to enforce the physical constraints in a probabilistic way under the GP regression framework.In addition,this new approach reduces the variance in the resulting GP model.
基金Supported by the National High Technology Research and Development Program of China(2014AA041803)the National Natural Science Foundation of China(61320106009)
文摘Low pressure chemical vapor deposition(LPCVD) is one of the most important processes during semiconductor manufacturing.However,the spatial distribution of internal temperature and extremely few samples makes it hard to build a good-quality model of this batch process.Besides,due to the properties of this process,the reliability of the model must be taken into consideration when optimizing the MVs.In this work,an optimal design strategy based on the self-learning Gaussian process model(GPM) is proposed to control this kind of spatial batch process.The GPM is utilized as the internal model to predict the thicknesses of thin films on all spatial-distributed wafers using the limited data.Unlike the conventional model based design,the uncertainties of predictions provided by GPM are taken into consideration to guide the optimal design of manipulated variables so that the designing can be more prudent Besides,the GPM is also actively enhanced using as little data as possible based on the predictive uncertainties.The effectiveness of the proposed strategy is successfully demonstrated in an LPCVD process.
文摘Gaussian Process Latent Variable Model (GPLVM), as a flexible bayesian non-parametric modeling method, has been extensively studied and applied in many learning tasks such as Intrusion Detection, Image Reconstruction, Facial Expression Recognition, Human pose estimation and so on. In this paper, we give a review and analysis for GPLVM and its extensions. Firstly, we formulate basic GPLVM and discuss its relation to Kernel Principal Components Analysis. Secondly, we summarize its improvements or variants and propose a taxonomy of GPLVM related models in terms of the various strategies that be used. Thirdly, we provide the detailed formulations of the main GPLVMs that extensively developed based on the strategies described in the paper. Finally, we further give some challenges in next researches of GPLVM.