时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本...时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。展开更多
In this paper, we propose an automatic classification for various images collections using two stage clustering method. Here, we have used global and local image features. First, we review about various types of featu...In this paper, we propose an automatic classification for various images collections using two stage clustering method. Here, we have used global and local image features. First, we review about various types of feature vector that is suita-ble to represent local and global properties of images, and similarity measures that can be represented an affinity be-tween these images. Second, we consider a clustering method for image collection. Here, we first build a coarser clus-tering by partitioning various images into several clusters using the flexible Mean shift algorithm and K-mean cluster-ing algorithm. Second, we construct dense clustering of images collection by optimizing a Gaussian Dirichlet process mixture model taking initial clusters as given coarser clustering. Finally, we have conducted the comparative experi-ments between our method and existing methods on various images datasets. Our approach has significant advantage over existing techniques. Besides integrating temporal and image content information, our approach can cluster auto-matically photographs without some assumption about number of clusters or requiring a priori information about initial clusters and it can also generalize better to different image collections.展开更多
文摘时间序列早期分类(ETSC)有两个矛盾的目标:早期性和准确率。分类早期性的实现,总是以牺牲它的准确率为代价。现有基于优化的多变量时间序列(MTS)早期分类方法,虽然在成本函数中考虑了错误分类成本和延迟决策成本,却忽视了MTS数据集样本之间的局部结构对分类性能的影响。针对这个问题,提出一种基于正交局部保持映射(OLPP)和成本优化的MTS早期分类模型(OLPPMOAE)。首先,使用OLPP将MTS样本前缀映射到低维空间,保持原数据集的局部结构;其次,在低维空间训练一组高斯过程(GP)分类器,生成训练集每个时刻的类概率;最后,使用粒子群优化(PSO)算法从这些类概率中学习停止规则中的最优参数。在6个MTS数据集上的实验结果表明,在早期性基本持平的情况下,OLPPMOAE的准确率显著高于基于成本的R1_C_(lr)(stopping Rule and Cost function with regularization term l_(1)and l_(2))模型,平均准确率能够提升11.33%~15.35%,调和均值(HM)能够提升4.71%~9.01%。因此,所提模型能够以较高的准确率尽早地分类MTS。
文摘In this paper, we propose an automatic classification for various images collections using two stage clustering method. Here, we have used global and local image features. First, we review about various types of feature vector that is suita-ble to represent local and global properties of images, and similarity measures that can be represented an affinity be-tween these images. Second, we consider a clustering method for image collection. Here, we first build a coarser clus-tering by partitioning various images into several clusters using the flexible Mean shift algorithm and K-mean cluster-ing algorithm. Second, we construct dense clustering of images collection by optimizing a Gaussian Dirichlet process mixture model taking initial clusters as given coarser clustering. Finally, we have conducted the comparative experi-ments between our method and existing methods on various images datasets. Our approach has significant advantage over existing techniques. Besides integrating temporal and image content information, our approach can cluster auto-matically photographs without some assumption about number of clusters or requiring a priori information about initial clusters and it can also generalize better to different image collections.