期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Operational optimization of copper flotation process based on the weighted Gaussian process regression and index-oriented adaptive differential evolution algorithm
1
作者 Zhiqiang Wang Dakuo He Haotian Nie 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期167-179,共13页
Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation indust... Concentrate copper grade(CCG)is one of the important production indicators of copper flotation processes,and keeping the CCG at the set value is of great significance to the economic benefit of copper flotation industrial processes.This paper addresses the fluctuation problem of CCG through an operational optimization method.Firstly,a density-based affinity propagationalgorithm is proposed so that more ideal working condition categories can be obtained for the complex raw ore properties.Next,a Bayesian network(BN)is applied to explore the relationship between the operational variables and the CCG.Based on the analysis results of BN,a weighted Gaussian process regression model is constructed to predict the CCG that a higher prediction accuracy can be obtained.To ensure the predicted CCG is close to the set value with a smaller magnitude of the operation adjustments and a smaller uncertainty of the prediction results,an index-oriented adaptive differential evolution(IOADE)algorithm is proposed,and the convergence performance of IOADE is superior to the traditional differential evolution and adaptive differential evolution methods.Finally,the effectiveness and feasibility of the proposed methods are verified by the experiments on a copper flotation industrial process. 展开更多
关键词 Weighted gaussian process regression Index-oriented adaptive differential evolution Operational optimization Copper flotation process
下载PDF
Optimization of Generator Based on Gaussian Process Regression Model with Conditional Likelihood Lower Bound Search
2
作者 Xiao Liu Pingting Lin +2 位作者 Fan Bu Shaoling Zhuang Shoudao Huang 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期32-42,共11页
The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regressi... The noise that comes from finite element simulation often causes the model to fall into the local optimal solution and over fitting during optimization of generator.Thus,this paper proposes a Gaussian Process Regression(GPR)model based on Conditional Likelihood Lower Bound Search(CLLBS)to optimize the design of the generator,which can filter the noise in the data and search for global optimization by combining the Conditional Likelihood Lower Bound Search method.Taking the efficiency optimization of 15 kW Permanent Magnet Synchronous Motor as an example.Firstly,this method uses the elementary effect analysis to choose the sensitive variables,combining the evolutionary algorithm to design the super Latin cube sampling plan;Then the generator-converter system is simulated by establishing a co-simulation platform to obtain data.A Gaussian process regression model combing the method of the conditional likelihood lower bound search is established,which combined the chi-square test to optimize the accuracy of the model globally.Secondly,after the model reaches the accuracy,the Pareto frontier is obtained through the NSGA-II algorithm by considering the maximum output torque as a constraint.Last,the constrained optimization is transformed into an unconstrained optimizing problem by introducing maximum constrained improvement expectation(CEI)optimization method based on the re-interpolation model,which cross-validated the optimization results of the Gaussian process regression model.The above method increase the efficiency of generator by 0.76%and 0.5%respectively;And this method can be used for rapid modeling and multi-objective optimization of generator systems. 展开更多
关键词 Generator optimization gaussian Process regression(GPR) Conditional Likelihood Lower Bound Search(CLLBS) Constraint improvement expectation(CEI) Finite element calculation
下载PDF
State of health prediction for lithium-ion batteries based on ensemble Gaussian process regression
3
作者 HUI Zhouli WANG Ruijie +1 位作者 FENG Nana YANG Ming 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期397-407,共11页
The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators ... The performance of lithium-ion batteries(LIBs)gradually declines over time,making it critical to predict the battery’s state of health(SOH)in real-time.This paper presents a model that incorporates health indicators and ensemble Gaussian process regression(EGPR)to predict the SOH of LIBs.Firstly,the degradation process of an LIB is analyzed through indirect health indicators(HIs)derived from voltage and temperature during discharge.Next,the parameters in the EGPR model are optimized using the gannet optimization algorithm(GOA),and the EGPR is employed to estimate the SOH of LIBs.Finally,the proposed model is tested under various experimental scenarios and compared with other machine learning models.The effectiveness of EGPR model is demonstrated using the National Aeronautics and Space Administration(NASA)LIB.The root mean square error(RMSE)is maintained within 0.20%,and the mean absolute error(MAE)is below 0.16%,illustrating the proposed approach’s excellent predictive accuracy and wide applicability. 展开更多
关键词 lithium-ion batteryies(LIBs) ensemble gaussian process regression(EGPR) state of health(SOH) health indicators(HIs) gannet optimization algorithm(GOA)
下载PDF
Multi-output Gaussian Process Regression Model with Combined Kernel Function for Polyester Esterification Processes
4
作者 王恒骞 耿君先 陈磊 《Journal of Donghua University(English Edition)》 CAS 2023年第1期27-33,共7页
In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the ... In polyester fiber industrial processes,the prediction of key performance indicators is vital for product quality.The esterification process is an indispensable step in the polyester polymerization process.It has the characteristics of strong coupling,nonlinearity and complex mechanism.To solve these problems,we put forward a multi-output Gaussian process regression(MGPR)model based on the combined kernel function for the polyester esterification process.Since the seasonal and trend decomposition using loess(STL)can extract the periodic and trend characteristics of time series,a combined kernel function based on the STL and the kernel function analysis is constructed for the MGPR.The effectiveness of the proposed model is verified by the actual polyester esterification process data collected from fiber production. 展开更多
关键词 seasonal and trend decomposition using loess(STL) multi-output gaussian process regression combined kernel function polyester esterification process
下载PDF
Fast Remaining Capacity Estimation for Lithium-ion Batteries Based on Short-time Pulse Test and Gaussian Process Regression 被引量:1
5
作者 Aihua Ran Ming Cheng +7 位作者 Shuxiao Chen Zheng Liang Zihao Zhou Guangmin Zhou Feiyu Kang Xuan Zhang Baohua Li Guodan Wei 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第3期238-246,共9页
It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integr... It remains challenging to effectively estimate the remaining capacity of the secondary lithium-ion batteries that have been widely adopted for consumer electronics,energy storage,and electric vehicles.Herein,by integrating regular real-time current short pulse tests with data-driven Gaussian process regression algorithm,an efficient battery estimation has been successfully developed and validated for batteries with capacity ranging from 100%of the state of health(SOH)to below 50%,reaching an average accuracy as high as 95%.Interestingly,the proposed pulse test strategy for battery capacity measurement could reduce test time by more than 80%compared with regular long charge/discharge tests.The short-term features of the current pulse test were selected for an optimal training process.Data at different voltage stages and state of charge(SOC)are collected and explored to find the most suitable estimation model.In particular,we explore the validity of five different machine-learning methods for estimating capacity driven by pulse features,whereas Gaussian process regression with Matern kernel performs the best,providing guidance for future exploration.The new strategy of combining short pulse tests with machine-learning algorithms could further open window for efficiently forecasting lithium-ion battery remaining capacity. 展开更多
关键词 capacity estimation data-driven method gaussian process regression lithium-ion battery pulse tests
下载PDF
Dynamic soft sensor development based on Gaussian mixture regression for fermentation processes 被引量:9
6
作者 Congli Mei Yong Su +2 位作者 Guohai Liu Yuhan Ding Zhiling Liao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2017年第1期116-122,共7页
The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation proce... The dynamic soft sensor based on a single Gaussian process regression(GPR) model has been developed in fermentation processes.However,limitations of single regression models,for multiphase/multimode fermentation processes,may result in large prediction errors and complexity of the soft sensor.Therefore,a dynamic soft sensor based on Gaussian mixture regression(GMR) was proposed to overcome the problems.Two structure parameters,the number of Gaussian components and the order of the model,are crucial to the soft sensor model.To achieve a simple and effective soft sensor,an iterative strategy was proposed to optimize the two structure parameters synchronously.For the aim of comparisons,the proposed dynamic GMR soft sensor and the existing dynamic GPR soft sensor were both investigated to estimate biomass concentration in a Penicillin simulation process and an industrial Erythromycin fermentation process.Results show that the proposed dynamic GMR soft sensor has higher prediction accuracy and is more suitable for dynamic multiphase/multimode fermentation processes. 展开更多
关键词 Dynamic modeling Process systems Instrumentation gaussian mixture regression Fermentation processes
下载PDF
Quality prediction of batch process using the global-local discriminant analysis based Gaussian process regression model
7
作者 卢春红 顾晓峰 《Journal of Southeast University(English Edition)》 EI CAS 2015年第1期80-86,共7页
The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR... The conventional single model strategy may be ill- suited due to the multiplicity of operation phases and system uncertainty. A novel global-local discriminant analysis (GLDA) based Gaussian process regression (GPR) approach is developed for the quality prediction of nonlinear and multiphase batch processes. After the collected data is preprocessed through batchwise unfolding, the hidden Markov model (HMM) is applied to identify different operation phases. A GLDA algorithm is also presented to extract the appropriate process variables highly correlated with the quality variables, decreasing the complexity of modeling. Besides, the multiple local GPR models are built in the reduced- dimensional space for all the identified operation phases. Furthermore, the HMM-based state estimation is used to classify each measurement sample of a test batch into a corresponding phase with the maximal likelihood estimation. Therefore, the local GPR model with respect to specific phase is selected for online prediction. The effectiveness of the proposed prediction approach is demonstrated through the multiphase penicillin fermentation process. The comparison results show that the proposed GLDA-GPR approach is superior to the regular GPR model and the GPR based on HMM (HMM-GPR) model. 展开更多
关键词 quality prediction global-local discriminantanalysis gaussian process regression hidden Markov model soft sensor
下载PDF
Gaussian process regression-based quaternion unscented Kalman robust filter for integrated SINS/GNSS 被引量:4
8
作者 LYU Xu HU Baiqing +3 位作者 DAI Yongbin SUN Mingfang LIU Yi GAO Duanyang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2022年第5期1079-1088,共10页
High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important... High-precision filtering estimation is one of the key techniques for strapdown inertial navigation system/global navigation satellite system(SINS/GNSS)integrated navigation system,and its estimation plays an important role in the performance evaluation of the navigation system.Traditional filter estimation methods usually assume that the measurement noise conforms to the Gaussian distribution,without considering the influence of the pollution introduced by the GNSS signal,which is susceptible to external interference.To address this problem,a high-precision filter estimation method using Gaussian process regression(GPR)is proposed to enhance the prediction and estimation capability of the unscented quaternion estimator(USQUE)to improve the navigation accuracy.Based on the advantage of the GPR machine learning function,the estimation performance of the sliding window for model training is measured.This method estimates the output of the observation information source through the measurement window and realizes the robust measurement update of the filter.The combination of GPR and the USQUE algorithm establishes a robust mechanism framework,which enhances the robustness and stability of traditional methods.The results of the trajectory simulation experiment and SINS/GNSS car-mounted tests indicate that the strategy has strong robustness and high estimation accuracy,which demonstrates the effectiveness of the proposed method. 展开更多
关键词 integrated navigation gaussian process regression(GPR) QUATERNION Kalman filter ROBUSTNESS
下载PDF
A Gaussian process regression-based sea surface temperature interpolation algorithm 被引量:1
9
作者 Yongshun ZHANG Miao FENG +2 位作者 Weimin ZHANG Huizan WANG Pinqiang WANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第4期1211-1221,共11页
The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provid... The resolution of ocean reanalysis datasets is generally low because of the limited resolution of their associated numerical models.Low-resolution ocean reanalysis datasets are therefore usually interpolated to provide an initial or boundary field for higher-resolution regional ocean models.However,traditional interpolation methods(nearest neighbor interpolation,bilinear interpolation,and bicubic interpolation)lack physical constraints and can generate significant errors at land-sea boundaries and around islands.In this paper,a machine learning method is used to design an interpolation algorithm based on Gaussian process regression.The method uses a multiscale kernel function to process two-dimensional space meteorological ocean processes and introduces multiscale physical feature information(sea surface wind stress,sea surface heat flux,and ocean current velocity).This greatly improves the spatial resolution of ocean features and the interpolation accuracy.The eff ectiveness of the algorithm was validated through interpolation experiments relating to sea surface temperature(SST).The root mean square error(RMSE)of the interpolation algorithm was 38.9%,43.7%,and 62.4%lower than that of bilinear interpolation,bicubic interpolation,and nearest neighbor interpolation,respectively.The interpolation accuracy was also significantly better in off shore area and around islands.The algorithm has an acceptable runtime cost and good temporal and spatial generalizability. 展开更多
关键词 gaussian process regression sea surface temperature(SST) machine learning kernel function spatial interpolation
下载PDF
Nonnegativity-enforced Gaussian process regression 被引量:1
10
作者 Andrew Pensoneault Xiu Yang Xueyu Zhu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第3期182-187,共6页
Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically r... Gaussian process(GP)regression is a flexible non-parametric approach to approximate complex models.In many cases,these models correspond to processes with bounded physical properties.Standard GP regression typically results in a proxy model which is unbounded for all temporal or spacial points,and thus leaves the possibility of taking on infeasible values.We propose an approach to enforce the physical constraints in a probabilistic way under the GP regression framework.In addition,this new approach reduces the variance in the resulting GP model. 展开更多
关键词 gaussian process regression Constrained optimization
下载PDF
Determination of reservoir induced earthquake using support vector machine and gaussian process regression
11
作者 Pijush Samui Dookie Kim 《Applied Geophysics》 SCIE CSCD 2013年第2期229-234,237,共7页
The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for... The prediction of magnitude (M) of reservoir induced earthquake is an important task in earthquake engineering. In this article, we employ a Support Vector Machine (SVM) and Gaussian Process Regression (GPR) for prediction of reservoir induced earthquake M based on reservoir parameters. Comprehensive parameter (E) and maximum reservoir depth] (H) are considered as inputs to the SVM and GPR. We give an equation for determination oil reservoir induced earthquake M. The developed SVM and GPR have been compared with] the Artificial Neural Network (ANN) method. The results show that the developed SVM and] GPR are efficient tools for prediction of reservoir induced earthquake M. / 展开更多
关键词 Reservoir induced earthquake earthquake magnitude Support Vector Machine gaussian Process regression PREDICTION
下载PDF
Rolling Gaussian Process Regression with Application to Regime Shifts
12
作者 William Menke 《Applied Mathematics》 2022年第11期859-868,共10页
Gaussian Process Regression (GPR) can be applied to the problem of estimating a spatially-varying field on a regular grid, based on noisy observations made at irregular positions. In cases where the field has a weak t... Gaussian Process Regression (GPR) can be applied to the problem of estimating a spatially-varying field on a regular grid, based on noisy observations made at irregular positions. In cases where the field has a weak time dependence, one may desire to estimate the present-time value of the field using a time window of data that rolls forward as new data become available, leading to a sequence of solution updates. We introduce “rolling GPR” (or moving window GPR) and present a procedure for implementing that is more computationally efficient than solving the full GPR problem at each update. Furthermore, regime shifts (sudden large changes in the field) can be detected by monitoring the change in posterior covariance of the predicted data during the updates, and their detrimental effect is mitigated by shortening the time window as the variance rises, and then decreasing it as it falls (but within prior bounds). A set of numerical experiments is provided that demonstrates the viability of the procedure. 展开更多
关键词 Rolling gaussian Process regression Regime Shift Moving Window Analysis Woodbury Identity Bordering Method
下载PDF
Peri-Net-Pro: the neural processes with quantified uncertainty for crack patterns
13
作者 M.KIM G.LIN 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第7期1085-1100,共16页
This paper develops a deep learning tool based on neural processes(NPs)called the Peri-Net-Pro,to predict the crack patterns in a moving disk and classifies them according to the classification modes with quantified u... This paper develops a deep learning tool based on neural processes(NPs)called the Peri-Net-Pro,to predict the crack patterns in a moving disk and classifies them according to the classification modes with quantified uncertainties.In particular,image classification and regression studies are conducted by means of convolutional neural networks(CNNs)and NPs.First,the amount and quality of the data are enhanced by using peridynamics to theoretically compensate for the problems of the finite element method(FEM)in generating crack pattern images.Second,case studies are conducted with the prototype microelastic brittle(PMB),linear peridynamic solid(LPS),and viscoelastic solid(VES)models obtained by using the peridynamic theory.The case studies are performed to classify the images by using CNNs and determine the suitability of the PMB,LBS,and VES models.Finally,a regression analysis is performed on the crack pattern images with NPs to predict the crack patterns.The regression analysis results confirm that the variance decreases when the number of epochs increases by using the NPs.The training results gradually improve,and the variance ranges decrease to less than 0.035.The main finding of this study is that the NPs enable accurate predictions,even with missing or insufficient training data.The results demonstrate that if the context points are set to the 10th,100th,300th,and 784th,the training information is deliberately omitted for the context points of the 10th,100th,and 300th,and the predictions are different when the context points are significantly lower.However,the comparison of the results of the 100th and 784th context points shows that the predicted results are similar because of the Gaussian processes in the NPs.Therefore,if the NPs are employed for training,the missing information of the training data can be supplemented to predict the results. 展开更多
关键词 neural process(NP) PERIDYNAMICS crack pattern molecular dynamic(MD)simulation machine learning gaussian process regression convolutional neural network(CNN)
下载PDF
Two-phase early prediction method for remaining useful life of lithium-ion batteries based on a neural network and Gaussian process regression
14
作者 Zhiyuan WEI Changying LIU +2 位作者 Xiaowen SUN Yiduo LI Haiyan LU 《Frontiers in Energy》 SCIE EI CSCD 2024年第4期447-462,共16页
Lithium-ion batteries(LIBs)are widely used in transportation,energy storage,and other fields.The prediction of the remaining useful life(RUL)of lithium batteries not only provides a reference for health management but... Lithium-ion batteries(LIBs)are widely used in transportation,energy storage,and other fields.The prediction of the remaining useful life(RUL)of lithium batteries not only provides a reference for health management but also serves as a basis for assessing the residual value of the battery.In order to improve the prediction accuracy of the RUL of LIBs,a two-phase RUL early prediction method combining neural network and Gaussian process regression(GPR)is proposed.In the initial phase,the features related to the capacity degradation of LIBs are utilized to train the neural network model,which is used to predict the initial cycle lifetime of 124 LIBs.The Pearson coefficient’s two most significant characteristic factors and the predicted normalized lifetime form a 3D space.The Euclidean distance between the test dataset and each cell in the training dataset and validation dataset is calculated,and the shortest distance is considered to have a similar degradation pattern,which is used to determine the initial Dual Exponential Model(DEM).In the second phase,GPR uses the DEM as the initial parameter to predict each test set’s early RUL(ERUL).By testing four batteries under different working conditions,the RMSE of all capacity estimation is less than 1.2%,and the accuracy percentage(AP)of remaining life prediction is more than 98%.Experiments show that the method does not need human intervention and has high prediction accuracy. 展开更多
关键词 lithium-ion batteries RUL prediction double exponential model neural network gaussian process regression(GPR)
原文传递
LiDAR-based estimation of bounding box coordinates using Gaussian process regression and particle swarm optimization
15
作者 Vinodha K. E.S.Gopi Tushar Agnibhoj 《Biomimetic Intelligence & Robotics》 EI 2024年第1期24-35,共12页
Camera-based object tracking systems in a given closed environment lack privacy and confidentiality.In this study,light detection and ranging(LiDAR)was applied to track objects similar to the camera tracking in a clos... Camera-based object tracking systems in a given closed environment lack privacy and confidentiality.In this study,light detection and ranging(LiDAR)was applied to track objects similar to the camera tracking in a closed environment,guaranteeing privacy and confidentiality.The primary objective was to demonstrate the efficacy of the proposed technique through carefully designed experiments conducted using two scenarios.In Scenario I,the study illustrates the capability of the proposed technique to detect the locations of multiple objects positioned on a flat surface,achieved by analyzing LiDAR data collected from several locations within the closed environment.Scenario II demonstrates the effectiveness of the proposed technique in detecting multiple objects using LiDAR data obtained from a single,fixed location.Real-time experiments are conducted with human subjects navigating predefined paths.Three individuals move within an environment,while LiDAR,fixed at the center,dynamically tracks and identifies their locations at multiple instances.Results demonstrate that a single,strategically positioned LiDAR can adeptly detect objects in motion around it.Furthermore,this study provides a comparison of various regression techniques for predicting bounding box coordinates.Gaussian process regression(GPR),combined with particle swarm optimization(PSO)for prediction,achieves the lowest prediction mean square error of all the regression techniques examined at 0.01.Hyperparameter tuning of GPR using PSO significantly minimizes the regression error.Results of the experiment pave the way for its extension to various real-time applications such as crowd management in malls,surveillance systems,and various Internet of Things scenarios. 展开更多
关键词 LIDAR Data acquisition Bounding box gaussian process regression Particle swarm optimization(PSO)
原文传递
Multi-fidelity Gaussian process based empirical potential development for Si:H nanowires 被引量:1
16
作者 Moonseop Kim Huayi Yin Guang Lin 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2020年第3期195-201,共7页
In material modeling,the calculation speed using the empirical potentials is fast compared to the first principle calculations,but the results are not as accurate as of the first principle calculations.First principle... In material modeling,the calculation speed using the empirical potentials is fast compared to the first principle calculations,but the results are not as accurate as of the first principle calculations.First principle calculations are accurate but slow and very expensive to calculate.In this work,first,the H-H binding energy and H2-H2 interaction energy are calculated using the first principle calculations which can be applied to the Tersoff empirical potential.Second,the H-H parameters are estimated.After fitting H-H parameters,the mechanical properties are obtained.Finally,to integrate both the low-fidelity empirical potential data and the data from the high-fidelity firstprinciple calculations,the multi-fidelity Gaussian process regression is employed to predict the HH binding energy and the H2-H2 interaction energy.Numerical results demonstrate the accuracy of the developed empirical potentials. 展开更多
关键词 Multi-fidelity gaussian process regression Inter-atomic potential and forces ELASTICITY
下载PDF
Gaussian process regressions on hot deformation behaviors of FGH98 nickel-based powder superalloy 被引量:2
17
作者 Jie Xiong Jian-Chao He +1 位作者 Xue-Song Leng Tong-Yi Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第15期177-185,共9页
The hot deformation behaviors of FGH98 nickel-based powder superalloy were experimentally investigated and theoretically analyzed by Arrhenius models and machine learning(ML).Hot compression tests were conducted with ... The hot deformation behaviors of FGH98 nickel-based powder superalloy were experimentally investigated and theoretically analyzed by Arrhenius models and machine learning(ML).Hot compression tests were conducted with a Gleeble-3800 thermo-mechanical simulation machine on the FGH98 superalloy at strain rates of 0.001–1 s–1 and temperatures of 1025–1175℃.The peak stresses under different deformation conditions were analyzed via the Sellars model and an ML-inspired Gaussian process regression(GPR)model.The prediction of the GPR model outperformed that from the Sellars model.In addition,the stress-strain responses were predicted by the GPR model and tested by experimentally measured stress-strain curves.The results indicate that the developed GPR model has great power with wide generalization capability in the prediction of hot deformation behaviors of FGH98 superalloy,as evidenced by the R2 value higher than 0.99 on the test dataset. 展开更多
关键词 Hot compressive deformation Nickel-based powder superalloy Activation energy gaussian process regression
原文传递
Gaussian process regression for prediction and confidence analysis of fruit traits by near-infrared spectroscopy
18
作者 Xiaojing Chen Jianxia Xue +3 位作者 Xiao Chen Xinyu Zhao Shujat Ali Guangzao Huang 《Food Quality and Safety》 SCIE CSCD 2023年第1期132-137,共6页
Detection of fruit traits by using near-infrared(NIR)spectroscopy may encounter out-of-distribution samples that exceed the generalization ability of a constructed calibration model.Therefore,confidence analysis for a... Detection of fruit traits by using near-infrared(NIR)spectroscopy may encounter out-of-distribution samples that exceed the generalization ability of a constructed calibration model.Therefore,confidence analysis for a given prediction is required,but this cannot be done using common calibration models of NIR spectroscopy.To address this issue,this paper studied the Gaussian process regression(GPR)for fruit traits detection using NIR spectroscopy.The mean and variance of the GPR were used as the predicted value and confidence,respectively.To show this,a real NIR data set related to dry matter content measurements in mango was used.Compared to partial least squares regression(PLSR),GPR showed approximately 14%lower root mean squared error(RMSE)for the in-distribution test set.Compared with no confidence analysis,using the variance of GPR to remove abnormal samples made GPR and PLSR showed approximately 58%and 10%lower RMSE on the mixed distribution test set,respectively(when the type 1 error rate was set to 0.1).Compared with traditional one-class classification methods,the variance of the GPR can be used to effectively eliminate poorly predicted samples. 展开更多
关键词 Near-infrared spectroscopy fruit traits calibration model confidence analysis gaussian process regression
原文传递
Deep Spatiotemporal Convolutional-Neural-Network-Based Remaining Useful Life Estimation of Bearings 被引量:6
19
作者 Xu Wang Tianyang Wang +4 位作者 Anbo Ming Qinkai Han Fulei Chu Wei Zhang Aihua Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2021年第3期115-129,共15页
The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation app... The remaining useful life(RUL)estimation of bearings is critical for ensuring the reliability of mechanical systems.Owing to the rapid development of deep learning methods,a multitude of data-driven RUL estimation approaches have been proposed recently.However,the following problems remain in existing methods:1)Most network models use raw data or statistical features as input,which renders it difficult to extract complex fault-related information hidden in signals;2)for current observations,the dependence between current states is emphasized,but their complex dependence on previous states is often disregarded;3)the output of neural networks is directly used as the estimated RUL in most studies,resulting in extremely volatile prediction results that lack robustness.Hence,a novel prognostics approach is proposed based on a time-frequency representation(TFR)subsequence,three-dimensional convolutional neural network(3DCNN),and Gaussian process regression(GPR).The approach primarily comprises two aspects:construction of a health indicator(HI)using the TFR-subsequence-3DCNN model,and RUL estimation based on the GPR model.The raw signals of the bearings are converted into TFR-subsequences by continuous wavelet transform and a dislocated overlapping strategy.Subsequently,the 3DCNN is applied to extract the hidden spatiotemporal features from the TFR-subsequences and construct HIs.Finally,the RUL of the bearings is estimated using the GPR model,which can also define the probability distribution of the potential function and prediction confidence.Experiments on the PRONOSTIA platform demonstrate the superiority of the proposed TFR-subsequence-3DCNN-GPR approach.The use of degradation-related spatiotemporal features in signals is proposed herein to achieve a highly accurate bearing RUL prediction with uncertainty quantification. 展开更多
关键词 BEARING Remaining useful life Continuous wavelet transform Convolution neural network gaussian process regression
下载PDF
Prediction of COVID-19 Cases Using Machine Learning for Effective Public Health Management 被引量:2
20
作者 Fahad Ahmad Saleh N.Almuayqil +3 位作者 Mamoona Humayun Shahid Naseem Wasim Ahmad Khan Kashaf Junaid 《Computers, Materials & Continua》 SCIE EI 2021年第3期2265-2282,共18页
COVID-19 is a pandemic that has affected nearly every country in the world.At present,sustainable development in the area of public health is considered vital to securing a promising and prosperous future for humans.H... COVID-19 is a pandemic that has affected nearly every country in the world.At present,sustainable development in the area of public health is considered vital to securing a promising and prosperous future for humans.However,widespread diseases,such as COVID-19,create numerous challenges to this goal,and some of those challenges are not yet defined.In this study,a Shallow Single-Layer Perceptron Neural Network(SSLPNN)and Gaussian Process Regression(GPR)model were used for the classification and prediction of confirmed COVID-19 cases in five geographically distributed regions of Asia with diverse settings and environmental conditions:namely,China,South Korea,Japan,Saudi Arabia,and Pakistan.Significant environmental and non-environmental features were taken as the input dataset,and confirmed COVID-19 cases were taken as the output dataset.A correlation analysis was done to identify patterns in the cases related to fluctuations in the associated variables.The results of this study established that the population and air quality index of a region had a statistically significant influence on the cases.However,age and the human development index had a negative influence on the cases.The proposed SSLPNN-based classification model performed well when predicting the classes of confirmed cases.During training,the binary classification model was highly accurate,with a Root Mean Square Error(RMSE)of 0.91.Likewise,the results of the regression analysis using the GPR technique with Matern 5/2 were highly accurate(RMSE=0.95239)when predicting the number of confirmed COVID-19 cases in an area.However,dynamic management has occupied a core place in studies on the sustainable development of public health but dynamic management depends on proactive strategies based on statistically verified approaches,like Artificial Intelligence(AI).In this study,an SSLPNN model has been trained to fit public health associated data into an appropriate class,allowing GPR to predict the number of confirmed COVID-19 cases in an area based on the given values of selected parameters. Therefore, this tool can help authorities in different ecological settingseffectively manage COVID-19. 展开更多
关键词 Public health sustainable development artificial intelligence SARSCoV-2 shallow single-layer perceptron neural network binary classification gaussian process regression
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部