A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner functio...A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.展开更多
We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred...We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred to the microwave photon, then the optical photon successively, which afterwards is transmitted to the remote node by cavity leaking,and finally the quantum state is transferred to the remote superconducting qubit. The high efficiency of the state transfer is achieved by controllable Gaussian pulses sequence and numerically demonstrated with theoretically feasible parameters.Our scheme has the potential to implement unified quantum computing–communication–computing, and high fidelity of the microwave–optics–microwave transfer process of the quantum state.展开更多
We investigate the nonclassical properties of the photon-added-then-subtracted coherent squeezed state (PASCSS) via the sub-Poissonian statistics, the photon-number distribution, and the negativity of the Wigner fun...We investigate the nonclassical properties of the photon-added-then-subtracted coherent squeezed state (PASCSS) via the sub-Poissonian statistics, the photon-number distribution, and the negativity of the Wigner function. It is found that the PASSCS is a superposition state of D(β)S(ζ)|0〉, D(β)S(ζ)|1〉, and D(β)S(ζ)|2〉. We find that the Mandel Q parameter, the photon-number distribution, and the negative volume of the Wigner function of the PASCSS are all periodic functions of the compound Ф - 0/2 with a period π involved with squeezing and displacement parameteTs.展开更多
文摘A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11305021)the Fundamental Research Funds for the Central Universities of China(Grants Nos.3132017072 and 3132015149)
文摘We propose a scheme to implement quantum state transfer between two distant quantum nodes via a hybrid solid–optomechanical interface. The quantum state is encoded on the native superconducting qubit, and transferred to the microwave photon, then the optical photon successively, which afterwards is transmitted to the remote node by cavity leaking,and finally the quantum state is transferred to the remote superconducting qubit. The high efficiency of the state transfer is achieved by controllable Gaussian pulses sequence and numerically demonstrated with theoretically feasible parameters.Our scheme has the potential to implement unified quantum computing–communication–computing, and high fidelity of the microwave–optics–microwave transfer process of the quantum state.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11264018)the Natural Science Foundation of Jiangxi Province of China (Grant No. 2010GQW0027)+1 种基金the Key Program Foundation of Ministry of Education of China (Grant No. 210115)the Sponsored Program for Cultivating Youths of Outstanding Ability in Jiangxi Normal University,China
文摘We investigate the nonclassical properties of the photon-added-then-subtracted coherent squeezed state (PASCSS) via the sub-Poissonian statistics, the photon-number distribution, and the negativity of the Wigner function. It is found that the PASSCS is a superposition state of D(β)S(ζ)|0〉, D(β)S(ζ)|1〉, and D(β)S(ζ)|2〉. We find that the Mandel Q parameter, the photon-number distribution, and the negative volume of the Wigner function of the PASCSS are all periodic functions of the compound Ф - 0/2 with a period π involved with squeezing and displacement parameteTs.