Considering two light beams which are in general single-mode Gaussian states and incident on input ports of an ideal beam splitter, respectively, this paper investigates how separability and entanglement of the output...Considering two light beams which are in general single-mode Gaussian states and incident on input ports of an ideal beam splitter, respectively, this paper investigates how separability and entanglement of the output lights depend on degrees of nonclassicality and purities of the input states. The minimum and maximum amounts of attainable entanglement in the output state are found展开更多
In this paper, we derive an explicit analytic expression of the relative entropy between two general Gaussian states. In the restriction of the set for Gaussian states and with the help of relative entropy formula and...In this paper, we derive an explicit analytic expression of the relative entropy between two general Gaussian states. In the restriction of the set for Gaussian states and with the help of relative entropy formula and Peres-Simon separability criterion, one can conveniently obtain the relative entropy entanglement for Gaussian states. As an example, the relative entanglement for a two-mode squeezed thermal state has been obtained.展开更多
In Li and Luo(2007 Phys.Rev.A 76032327),the inequality(1/2)T≥Q was identified as a fundamental postulate for a consistent theory of quantum versus classical correlations for arbitrary measures of total T and quantum ...In Li and Luo(2007 Phys.Rev.A 76032327),the inequality(1/2)T≥Q was identified as a fundamental postulate for a consistent theory of quantum versus classical correlations for arbitrary measures of total T and quantum Q correlations in bipartite quantum states.Besides,Hayden et al(2006 Commun.Math.Phys.26595)have conjectured that,in some conditions within systems endowed with infinite-dimensional Hilbert spaces,quantum correlations may dominate not only half of total correlations but total correlations itself.Here,in a two-mode Gaussian state,quantifying T and Q respectively by the quantum mutual information I~G and the entanglement of formation(EoF)ε_(F)^(G),we verify thatε_(F)^(G),is always less than(1/2)I_(R)^(G( when I~G andε_(F)^(G) are defined via the Rényi-2 entropy.While via the von Neumann entropy,ε_(F,V)^(G),may even dominate I_(V)^(G) itself,which partly consolidates the Hayden conjecture,and partly,provides strong evidence hinting that the origin of this counterintuitive behavior should intrinsically be related to the von Neumann entropy by which the EoFε_(F,V)^(G),is defined,rather than related to the conceptual definition of the EoFε_(F).The obtained results show that—in the special case of mixed two-mode Gaussian states—quantum entanglement can be faithfully quantified by the Gaussian Rényi-2 EoFε_(F,R)^(G),.展开更多
Quantum entanglement and nonlocality properties of a family of two-mode Gaussian pure states have been investigated. The results show that the entanglement of these states is determined by both the two-mode squeezing ...Quantum entanglement and nonlocality properties of a family of two-mode Gaussian pure states have been investigated. The results show that the entanglement of these states is determined by both the two-mode squeezing parameter and the difference of the two single-mode squeezing parameters. For the same two-mode squeezing parameter, these states show larger entanglement than the usual two-mode squeezed vacuum state. The violation of Bell inequality depends strongly on all the squeezing parameters of these states and disappears completely in the limit of large squeezing. In particular, these states can exhibit much stronger violation of local realism than two-mode squeezed vacuum state in the range of experimentally available squeezing values.展开更多
The discriminating strength DS(ρAB) induced by local Gaussian unitary operators for any(n + m)-mode Gaussian state ρABis introduced in [Phys. Rev. A 83(2011) 042325]. In this paper, we further discuss the quantity b...The discriminating strength DS(ρAB) induced by local Gaussian unitary operators for any(n + m)-mode Gaussian state ρABis introduced in [Phys. Rev. A 83(2011) 042325]. In this paper, we further discuss the quantity by restricting to Hilbert-Schmidt norm. The analytic formulas of DS for two-mode squeezed thermal states and mixed thermal states are given. Then, the relationship between DS(ρAB) and DS((I ? Φ)(ρAB)) for some special Gaussian channels Φ is discussed. In addition, DS is compared with Gaussian entanglement for symmetric squeezed thermal states.展开更多
A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner functio...A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.展开更多
We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by anal...We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence: amplitude damping model and phase damping model.For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.展开更多
Generalized photon-added coherent state (GPACS) is creation and annihilation operations on the coherent state. obtained by repeatedly acting the combination of Bose It is found that GPACS can be regarded as a Hermit...Generalized photon-added coherent state (GPACS) is creation and annihilation operations on the coherent state. obtained by repeatedly acting the combination of Bose It is found that GPACS can be regarded as a Hermiteexcited coherent state due to its normalization factor related to a Hermite polynomial. In addition, we adopt the Hilbert-Schmidt distance to quantify the non-Gaussian character of GPACS and discuss the decoherence of GPACS in dissipative channel by studying the loss of nonclassicality in reference of the negativity of Wigner function.展开更多
Realizing the logic operations with small-scale states is pursued to improve the utilization of quantum resources and to simplify the experimental setup. We propose a scheme to realize a general single-mode Gauss/an o...Realizing the logic operations with small-scale states is pursued to improve the utilization of quantum resources and to simplify the experimental setup. We propose a scheme to realize a general single-mode Gauss/an operation with a two-mode entangled state by utilizing only one nondegenerate optical parametric amplifier and by adjusting four angle parameters. The fidelity of the output mode can be optimized by changing one of the angle parameters. This scheme would be utilized as a basic efficient element in the future large-scale quantum computation.展开更多
The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian ...The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian process is obtained based on the equivalence of the level up-crossing rates of the two processes. A saddle point approximation procedure is applied for calculating the level up-crossing rates in this study. The accuracy and efficiency of the transformed Gaussian process method are validated by comparing the results predicted by using the method with those predicted by the Monte Carlo simulation method.展开更多
We construct a new type of photon-added squeezed coherent state generated by repeatedly operating the bosonic creation operator on a new type of squeezed coherent state [Fan H Y and Xiao M 1996 Phys. Lett. A 220 81l. ...We construct a new type of photon-added squeezed coherent state generated by repeatedly operating the bosonic creation operator on a new type of squeezed coherent state [Fan H Y and Xiao M 1996 Phys. Lett. A 220 81l. We find that its normalization factor is related to single-variable Hermite polynomials. Furthermore, we investigate its statistical properties, such as Mandel's Q parameter, photon-number distribution, and Wigner function. The nonelassieality is displayed in terms of the intense oscillation of photon-number distribution and the negativity of the Wigner function.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant No 10574103).
文摘Considering two light beams which are in general single-mode Gaussian states and incident on input ports of an ideal beam splitter, respectively, this paper investigates how separability and entanglement of the output lights depend on degrees of nonclassicality and purities of the input states. The minimum and maximum amounts of attainable entanglement in the output state are found
基金Project supported by the Natural Science Foundation of Shandong Province, China (Grant No Y2001A04).
文摘In this paper, we derive an explicit analytic expression of the relative entropy between two general Gaussian states. In the restriction of the set for Gaussian states and with the help of relative entropy formula and Peres-Simon separability criterion, one can conveniently obtain the relative entropy entanglement for Gaussian states. As an example, the relative entanglement for a two-mode squeezed thermal state has been obtained.
基金I am particularly indebted to an anonymous referee for constructive critiques and insightful comments.
文摘In Li and Luo(2007 Phys.Rev.A 76032327),the inequality(1/2)T≥Q was identified as a fundamental postulate for a consistent theory of quantum versus classical correlations for arbitrary measures of total T and quantum Q correlations in bipartite quantum states.Besides,Hayden et al(2006 Commun.Math.Phys.26595)have conjectured that,in some conditions within systems endowed with infinite-dimensional Hilbert spaces,quantum correlations may dominate not only half of total correlations but total correlations itself.Here,in a two-mode Gaussian state,quantifying T and Q respectively by the quantum mutual information I~G and the entanglement of formation(EoF)ε_(F)^(G),we verify thatε_(F)^(G),is always less than(1/2)I_(R)^(G( when I~G andε_(F)^(G) are defined via the Rényi-2 entropy.While via the von Neumann entropy,ε_(F,V)^(G),may even dominate I_(V)^(G) itself,which partly consolidates the Hayden conjecture,and partly,provides strong evidence hinting that the origin of this counterintuitive behavior should intrinsically be related to the von Neumann entropy by which the EoFε_(F,V)^(G),is defined,rather than related to the conceptual definition of the EoFε_(F).The obtained results show that—in the special case of mixed two-mode Gaussian states—quantum entanglement can be faithfully quantified by the Gaussian Rényi-2 EoFε_(F,R)^(G),.
基金supported by the National Natural Science Foundation of China (Grant No 10374007)the Natural Science Foundation of Hunan Province (Grant No 06jj50014)+1 种基金the Natural Science Foundation of the Education Department of Hunan Province, China(Grant No 05C696)the Young Core Teachers Foundation of Hunan Provincial Education Department, China
文摘Quantum entanglement and nonlocality properties of a family of two-mode Gaussian pure states have been investigated. The results show that the entanglement of these states is determined by both the two-mode squeezing parameter and the difference of the two single-mode squeezing parameters. For the same two-mode squeezing parameter, these states show larger entanglement than the usual two-mode squeezed vacuum state. The violation of Bell inequality depends strongly on all the squeezing parameters of these states and disappears completely in the limit of large squeezing. In particular, these states can exhibit much stronger violation of local realism than two-mode squeezed vacuum state in the range of experimentally available squeezing values.
基金Supported by Natural Science Foundation of China under Grant Nos.11671006,11671294Outstanding Youth Foundation of Shanxi Province(201701D211001)
文摘The discriminating strength DS(ρAB) induced by local Gaussian unitary operators for any(n + m)-mode Gaussian state ρABis introduced in [Phys. Rev. A 83(2011) 042325]. In this paper, we further discuss the quantity by restricting to Hilbert-Schmidt norm. The analytic formulas of DS for two-mode squeezed thermal states and mixed thermal states are given. Then, the relationship between DS(ρAB) and DS((I ? Φ)(ρAB)) for some special Gaussian channels Φ is discussed. In addition, DS is compared with Gaussian entanglement for symmetric squeezed thermal states.
文摘A new kind of quantum non-Gaussian state with a vortex structure, termed a Bessel-Gaussian vortex state, is constructed, which is an eigenstate of the sum of squared annihilation operators a2 + b2. The Wigner function of the quantum vortex state is derived and exhibits negativity which is an indication of nonclassicality. It is also found that a quantized vortex state is always in entanglement. And a scheme for generating such quantized vortex states is proposed.
基金Project supported by the Natural Science Foundation of Hunan Province,China(Grant No.2017JJ2214)the Key Project Foundation of the Education Department of Hunan Province,China(Grant No.14A114
文摘We provide a measure to characterize the non-Gaussianity of phase-space function of bosonic quantum states based on the cumulant theory. We study the non-Gaussianity dynamics of two-mode squeezed number states by analyzing the phase-averaged kurtosis for two different models of decoherence: amplitude damping model and phase damping model.For the amplitude damping model, the non-Gaussianity is very fragile and completely vanishes at a finite time. For the phase damping model, such states exhibit rich non-Gaussian characters. In particular, we obtain a transition time that such states can transform from sub-Gaussianity into super-Gaussianity during the evolution. Finally, we compare our measure with the existing measures of non-Gaussianity under the independent dephasing environment.
基金supported by the National Natural Science Foundation of China (Grant No.11174114)the Research Foundation of Changzhou Institute of Technology,China (Grant No.YN1007)
文摘Generalized photon-added coherent state (GPACS) is creation and annihilation operations on the coherent state. obtained by repeatedly acting the combination of Bose It is found that GPACS can be regarded as a Hermiteexcited coherent state due to its normalization factor related to a Hermite polynomial. In addition, we adopt the Hilbert-Schmidt distance to quantify the non-Gaussian character of GPACS and discuss the decoherence of GPACS in dissipative channel by studying the loss of nonclassicality in reference of the negativity of Wigner function.
基金Supported by the National Natural Science Foundation of China under Grant Nos 61205115,11474003 and 61675006the Natural Science Foundation of Anhui Province under Grant Nos 1608085MF133 and 1408085MA19+1 种基金the Foundation for the Young Talent of Anhui Province under Grant No gxyqZD2016065the Youth Foundation of Anhui University of Technology under Grant Nos RD16100249
文摘Realizing the logic operations with small-scale states is pursued to improve the utilization of quantum resources and to simplify the experimental setup. We propose a scheme to realize a general single-mode Gauss/an operation with a two-mode entangled state by utilizing only one nondegenerate optical parametric amplifier and by adjusting four angle parameters. The fidelity of the output mode can be optimized by changing one of the angle parameters. This scheme would be utilized as a basic efficient element in the future large-scale quantum computation.
文摘The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian process is obtained based on the equivalence of the level up-crossing rates of the two processes. A saddle point approximation procedure is applied for calculating the level up-crossing rates in this study. The accuracy and efficiency of the transformed Gaussian process method are validated by comparing the results predicted by using the method with those predicted by the Monte Carlo simulation method.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 10905015 and 41104111)the Excellent Young Talents Fund of Higher Schools in Anhui Province, China (Grant No. 2011SQRL147)
文摘We construct a new type of photon-added squeezed coherent state generated by repeatedly operating the bosonic creation operator on a new type of squeezed coherent state [Fan H Y and Xiao M 1996 Phys. Lett. A 220 81l. We find that its normalization factor is related to single-variable Hermite polynomials. Furthermore, we investigate its statistical properties, such as Mandel's Q parameter, photon-number distribution, and Wigner function. The nonelassieality is displayed in terms of the intense oscillation of photon-number distribution and the negativity of the Wigner function.