Use of data assimilation to initialize hydrometeors plays a vital role in numerical weather prediction(NWP).To directly analyze hydrometeors in data assimilation systems from cloud-sensitive observations,hydrometeor c...Use of data assimilation to initialize hydrometeors plays a vital role in numerical weather prediction(NWP).To directly analyze hydrometeors in data assimilation systems from cloud-sensitive observations,hydrometeor control variables are necessary.Common data assimilation systems theoretically require that the probability density functions(PDFs)of analysis,background,and observation errors should satisfy the Gaussian unbiased assumptions.In this study,a Gaussian transform method is proposed to transform hydrometeors to more Gaussian variables,which is modified from the Softmax function and renamed as Quasi-Softmax transform.The Quasi-Softmax transform method then is compared to the original hydrometeor mixing ratios and their logarithmic transform and Softmax transform.The spatial distribution,the non-Gaussian nature of the background errors,and the characteristics of the background errors of hydrometeors in each method are studied.Compared to the logarithmic and Softmax transform,the Quasi-Softmax method keeps the vertical distribution of the original hydrometeor mixing ratios to the greatest extent.The results of the D′Agostino test show that the hydrometeors transformed by the Quasi-Softmax method are more Gaussian when compared to the other methods.The Gaussian transform has been added to the control variable transform to estimate the background error covariances.Results show that the characteristics of the hydrometeor background errors are reasonable for the Quasi-Softmax method.The transformed hydrometeors using the Quasi-Softmax transform meet the Gaussian unbiased assumptions of the data assimilation system,and are promising control variables for data assimilation systems.展开更多
Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularl...Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.展开更多
General prediction formulas involving Hermite polynomials are developed for time series expressed as a transformation of a Gaussian process.The prediction gains over linear predictors are examined numerically,demonstr...General prediction formulas involving Hermite polynomials are developed for time series expressed as a transformation of a Gaussian process.The prediction gains over linear predictors are examined numerically,demonstrating the improvement of nonlinear prediction.展开更多
基金National Key Research and Development Program of China(Grant No.2017YFC1502102)National Natural Science Foundation of China(Grant No.42075148)+1 种基金Graduate Research and Innovation Projects of Jiangsu Province(Grant No.KYCX20_0910)the High-Performance Computing Center of Nanjing University of Information Science and Technology(NUIST).
文摘Use of data assimilation to initialize hydrometeors plays a vital role in numerical weather prediction(NWP).To directly analyze hydrometeors in data assimilation systems from cloud-sensitive observations,hydrometeor control variables are necessary.Common data assimilation systems theoretically require that the probability density functions(PDFs)of analysis,background,and observation errors should satisfy the Gaussian unbiased assumptions.In this study,a Gaussian transform method is proposed to transform hydrometeors to more Gaussian variables,which is modified from the Softmax function and renamed as Quasi-Softmax transform.The Quasi-Softmax transform method then is compared to the original hydrometeor mixing ratios and their logarithmic transform and Softmax transform.The spatial distribution,the non-Gaussian nature of the background errors,and the characteristics of the background errors of hydrometeors in each method are studied.Compared to the logarithmic and Softmax transform,the Quasi-Softmax method keeps the vertical distribution of the original hydrometeor mixing ratios to the greatest extent.The results of the D′Agostino test show that the hydrometeors transformed by the Quasi-Softmax method are more Gaussian when compared to the other methods.The Gaussian transform has been added to the control variable transform to estimate the background error covariances.Results show that the characteristics of the hydrometeor background errors are reasonable for the Quasi-Softmax method.The transformed hydrometeors using the Quasi-Softmax transform meet the Gaussian unbiased assumptions of the data assimilation system,and are promising control variables for data assimilation systems.
文摘Three recent breakthroughs due to AI in arts and science serve as motivation:An award winning digital image,protein folding,fast matrix multiplication.Many recent developments in artificial neural networks,particularly deep learning(DL),applied and relevant to computational mechanics(solid,fluids,finite-element technology)are reviewed in detail.Both hybrid and pure machine learning(ML)methods are discussed.Hybrid methods combine traditional PDE discretizations with ML methods either(1)to help model complex nonlinear constitutive relations,(2)to nonlinearly reduce the model order for efficient simulation(turbulence),or(3)to accelerate the simulation by predicting certain components in the traditional integration methods.Here,methods(1)and(2)relied on Long-Short-Term Memory(LSTM)architecture,with method(3)relying on convolutional neural networks.Pure ML methods to solve(nonlinear)PDEs are represented by Physics-Informed Neural network(PINN)methods,which could be combined with attention mechanism to address discontinuous solutions.Both LSTM and attention architectures,together with modern and generalized classic optimizers to include stochasticity for DL networks,are extensively reviewed.Kernel machines,including Gaussian processes,are provided to sufficient depth for more advanced works such as shallow networks with infinite width.Not only addressing experts,readers are assumed familiar with computational mechanics,but not with DL,whose concepts and applications are built up from the basics,aiming at bringing first-time learners quickly to the forefront of research.History and limitations of AI are recounted and discussed,with particular attention at pointing out misstatements or misconceptions of the classics,even in well-known references.Positioning and pointing control of a large-deformable beam is given as an example.
文摘General prediction formulas involving Hermite polynomials are developed for time series expressed as a transformation of a Gaussian process.The prediction gains over linear predictors are examined numerically,demonstrating the improvement of nonlinear prediction.