Propagation characterization is one of the main building blocks for millimetre wave (MMW) communication. The Gaussian beam has attractive features to become a prospective wave form for millimetre radio communication...Propagation characterization is one of the main building blocks for millimetre wave (MMW) communication. The Gaussian beam has attractive features to become a prospective wave form for millimetre radio communication, especially for the utility inside tunnels. A ray tracing method embedded with spectral features of Gaussian beam is employed to analyze mil- limetre wave propagation in a circle tunnel in this paper. In consideration of geometrical figure of the tunnel, the superposition behaviour of direct and reflective beams is analyzed via simplified approximation of Gaussian beam spectral feature. Then the propagation models are established to derive amplitude, phase, and delay spread of received wave. A typical straight tunnel model is used to simulate the propagation behaviour, where strong multi-path effect with deeply fading of signal intensity and dramatically enhancing of delay spread emerges. For investigation of the spectral feature of the multi-path effect, a reflection loss of 14 dB is taken into consideration at a designated point. To analyze the influences of frequency and transmission distance, the propagation characteristics at three different frequencies of 45 GHz, 65 GHz and 85 GHz are compared with the beam travelling down the tunnel. In addition, three different reflection losses of 14 dB, 20 dB, and 26 dB at the frequency of 65 GHz are also investigated to research the influence of the reflecting coefficient.展开更多
In this paper, we studied the effect of Gaussian coloured noise on the formation and instability of spiral waves described by one class of modified FitzHugh Nagumo equation. It was found that Gaussian coloured noise p...In this paper, we studied the effect of Gaussian coloured noise on the formation and instability of spiral waves described by one class of modified FitzHugh Nagumo equation. It was found that Gaussian coloured noise plays a constructive role in the formation, transition and instability of spiral wave. Too weak or too strong noise may act against the formation of spiral waves. At a certain noise level, spiral wave is maintained in a medium, in which spiral wave cannot be observed in the absence of the noise. It is difficult to make a stable spiral wave into unstable state by Gaussian coloured noise, unless the noise level is very high. The parameter regions of Gaussian coloured noise for spiral forming and spiral instability were given and discussed with numerical simulations.展开更多
The high frequency gravitational waves (around lOS-lO12 Hz) could interact with a specially designed electro- magnetic resonance system. It is found that the power of transverse perturbative photon flux (PPF) of a...The high frequency gravitational waves (around lOS-lO12 Hz) could interact with a specially designed electro- magnetic resonance system. It is found that the power of transverse perturbative photon flux (PPF) of an electromagnetic resonance system can be improved significantly by virtue of an astigmatic Caussian beam. Cor- respondingly the signal-to-noise ratio (SNR) would also be improved. When the eccentric ratio of waist satisfying w0x : w0y 〉 1, the peak value of signal photon flux could be raised by 2-4 times with typical systematic parameters, while the background photon flux would be depressed. Therefore, the ratio of transverse PPF to background photon flux (i.e., SNR) can be further improved 3-8 times with dimensionless amplitude of relic gravitational wave ht = 10-36.展开更多
The present paper is aimed to study the effect of Gaussian laser light on first and second sound waves in superfluid helium theoretically using optoacoustic method. The mechanism applied in this study is electrostrict...The present paper is aimed to study the effect of Gaussian laser light on first and second sound waves in superfluid helium theoretically using optoacoustic method. The mechanism applied in this study is electrostriction mechanism. This study considers crystal parts of superfluid helium with a zero absorption coefficient applying electrostriction mechanism. Affecting Gaussian laser light on these crystal parts, a spectrum of cylindrical first and second sound waves and cylindrical slow and rapid waves is obtained. Meanwhile, frequency of waves amplitudes proportionate to time period of laser light is calculated.展开更多
In this paper, without recourse to the nonlinear dynamical equations of the waves, the nonlinear random waves are retrieved from the non-Gaussian characteristic of the sea surface elevation distribution. The question ...In this paper, without recourse to the nonlinear dynamical equations of the waves, the nonlinear random waves are retrieved from the non-Gaussian characteristic of the sea surface elevation distribution. The question of coincidence of the nonlinear wave profile, spectrum and its distributions of maximum (or minimum) values of the sea surface elevation with results derived from some existing nonlinear theories is expounded under the narrow-band spectrum condition. Taking the shoaling sea wave as an example, the nonlinear random wave process and its spectrum in shallow water are retrieved from both the non-Gaussian characteristics of the sea surface elevation distribution in shallow water and the normal sea waves in deep water and compared with the values actually measured. Results show that they can coincide with the actually measured values quite well, thus, this can confirm that the method proposed in this paper is feasible.展开更多
In this work, we present the study of electromagnetic wave propagation through a medium with a variable dielectric function using the concept of Gaussian Beam. First of all, we start with wave equation with which we o...In this work, we present the study of electromagnetic wave propagation through a medium with a variable dielectric function using the concept of Gaussian Beam. First of all, we start with wave equation with which we obtain the solution in terms of the electric field and intensity distributions approximate to Gaussian Function, . With this, we analyze the dependency of r on Gaussian beam distribution spread, the distant from the axis at which the intensity of the beam distribution begins to fall at a given estimate of its peak value. The influence of the optimum beam waist wo and the beam spread on the intensity distribution will also be analyzed.展开更多
In this article, we consider the long time behavior of the solutions to stochastic wave equations driven by a non-Gaussian Lévy process. We shall prove that under some appropriate conditions, the exponential stab...In this article, we consider the long time behavior of the solutions to stochastic wave equations driven by a non-Gaussian Lévy process. We shall prove that under some appropriate conditions, the exponential stability of the solutions holds. Finally, we give two examples to illustrate our results.展开更多
The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian ...The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian process is obtained based on the equivalence of the level up-crossing rates of the two processes. A saddle point approximation procedure is applied for calculating the level up-crossing rates in this study. The accuracy and efficiency of the transformed Gaussian process method are validated by comparing the results predicted by using the method with those predicted by the Monte Carlo simulation method.展开更多
The probability distributions of wave characteristics from three groups of sampled ocean data with different significant wave heights have been analyzed using two transformation functions estimated by non-parametric a...The probability distributions of wave characteristics from three groups of sampled ocean data with different significant wave heights have been analyzed using two transformation functions estimated by non-parametric and parametric methods. The marginal wave characteristic distribution and the joint density of wave properties have been calculated using the two transformations, with the results and accuracy of both transformations presented here. The two transformations deviate slightly between each other for the calculation of the crest and trough height marginal wave distributions, as well as the joint densities of wave amplitude with other wave properties. The transformation methods for the calculation of the wave crest and trough height distributions are shown to provide good agreement with real ocean data. Our work will help in the determination of the most appropriate transformation procedure for the prediction of extreme values.展开更多
In a biased photorefractive crystal, the process of two one-dimensional waves mixing, i.e., the dynamical evolution of both pump beam and signal beam, is traced by numerically solving the coupled-wave equation. Direct...In a biased photorefractive crystal, the process of two one-dimensional waves mixing, i.e., the dynamical evolution of both pump beam and signal beam, is traced by numerically solving the coupled-wave equation. Direct simulations show that the propagation and stability of the two beams are completely determined by the system parameters, such as the external bias field, the intensity and the beam waist of the pump beam. By adjusting these parameters, one can control the state of two Gaussian waves mixing. The numerical results are helpful for performing a two-wave mixing experiment.展开更多
本文采用CTU(corner transport upwind)+CT(constrained transport)算法求解理想可压缩磁流体动力学(magneto-hydro-dynamic,MHD)方程,仿真研究了不同方向磁场控制下高斯分布轻质气柱界面受平面冲击波扰动后的演化过程,揭示了磁场方向...本文采用CTU(corner transport upwind)+CT(constrained transport)算法求解理想可压缩磁流体动力学(magneto-hydro-dynamic,MHD)方程,仿真研究了不同方向磁场控制下高斯分布轻质气柱界面受平面冲击波扰动后的演化过程,揭示了磁场方向对界面不稳定性的影响机理.仿真结果探讨了有/无磁场作用下流场特性与波系结构的发展,对比分析了磁场方向对气柱的长度、高度、射流宽度和体积压缩率的影响,并结合流场上半区环量、能量分量、速度和磁场力分布,多角度分析了磁场方向对界面不稳定性的影响机理.结果表明,磁压力推动涡量远离界面,降低了涡量在密度界面上的沉积而附着在分裂后的涡层上,从而有效抑制Richtmyer-Meshkov不稳定性对界面的影响;由于磁张力附着在被分离的涡层上,且其作用方向与界面因速度剪切而卷起涡的方向相反,因此抑制了界面因Kelvin-Helmholtz不稳定性而形成涡串.另外,纵向磁场控制下的磁张力反作用于中轴射流方向,同样抑制了Rayleigh-Taylor不稳定性的发展.展开更多
不对称接地故障占所有线路故障的90%以上,接地距离保护在应对此类故障方面发挥了不可替代的作用。随着新能源高比例渗透,各种传统单端工频量保护性能显著下降已成为共识。基于故障分量线模和零模波速差的保护判据理论上仅需利用到故障...不对称接地故障占所有线路故障的90%以上,接地距离保护在应对此类故障方面发挥了不可替代的作用。随着新能源高比例渗透,各种传统单端工频量保护性能显著下降已成为共识。基于故障分量线模和零模波速差的保护判据理论上仅需利用到故障初始行波到达时刻信息,是一种原理简单可靠的单端量快速保护判据,已经在直流电网中成功实践。但在尝试将这类保护应用于交流电网时发现,受波头前陡较缓而难以精确定位波到时刻、依赖高采样率等诸多不利因素影响,存在过大的模糊判别区,除了特长线路外,对绝大部分线路几乎没有应用可行性。波到时刻的精准辨识是一个复杂的非线性问题,利用人工智能的方法进行辨识是一条可行的解决思路,对此,该文提出一种新的单端暂态量主保护判据。首先,分析波达时刻与波形关系,并指出这种关系能够采用机器学习来映射;其次,引入高斯过程回归(Gaussian process regression,GPR),在对初始行波数据进行预处理得到样本集后,输入GPR预测模型进行训练;然后,依据模型评估指标得到最优训练模型以输出高可信性的线-零模波达时差,据此实现了基于行波模量传输时间差的保护判据;最后,在利用PSCAD仿真验证所提保护判据有效性和普适性的基础上,进一步利用现场实测数据对判据进行测试,验证其实用性。该文工作为新能源交流系统下单端暂态量保护的性能提升提供新的解决思路。展开更多
以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征...以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。展开更多
基金supported by the Shanghai Leading Academic Discipline Project (Grant No.S30108)the Science and Technology Commission of Shanghai Municipality (Grant No.08DZ2231100)
文摘Propagation characterization is one of the main building blocks for millimetre wave (MMW) communication. The Gaussian beam has attractive features to become a prospective wave form for millimetre radio communication, especially for the utility inside tunnels. A ray tracing method embedded with spectral features of Gaussian beam is employed to analyze mil- limetre wave propagation in a circle tunnel in this paper. In consideration of geometrical figure of the tunnel, the superposition behaviour of direct and reflective beams is analyzed via simplified approximation of Gaussian beam spectral feature. Then the propagation models are established to derive amplitude, phase, and delay spread of received wave. A typical straight tunnel model is used to simulate the propagation behaviour, where strong multi-path effect with deeply fading of signal intensity and dramatically enhancing of delay spread emerges. For investigation of the spectral feature of the multi-path effect, a reflection loss of 14 dB is taken into consideration at a designated point. To analyze the influences of frequency and transmission distance, the propagation characteristics at three different frequencies of 45 GHz, 65 GHz and 85 GHz are compared with the beam travelling down the tunnel. In addition, three different reflection losses of 14 dB, 20 dB, and 26 dB at the frequency of 65 GHz are also investigated to research the influence of the reflecting coefficient.
基金Project supported partially by National Science Foundation of China (Grant No 10305005)the Fundamental Research Fund for Physics and Mathematic of Lanzhou University of China
文摘In this paper, we studied the effect of Gaussian coloured noise on the formation and instability of spiral waves described by one class of modified FitzHugh Nagumo equation. It was found that Gaussian coloured noise plays a constructive role in the formation, transition and instability of spiral wave. Too weak or too strong noise may act against the formation of spiral waves. At a certain noise level, spiral wave is maintained in a medium, in which spiral wave cannot be observed in the absence of the noise. It is difficult to make a stable spiral wave into unstable state by Gaussian coloured noise, unless the noise level is very high. The parameter regions of Gaussian coloured noise for spiral forming and spiral instability were given and discussed with numerical simulations.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11205254 and 61501069the Fundamental Research Funds for the Central Universities under Grant No 106112016CDJXY300002
文摘The high frequency gravitational waves (around lOS-lO12 Hz) could interact with a specially designed electro- magnetic resonance system. It is found that the power of transverse perturbative photon flux (PPF) of an electromagnetic resonance system can be improved significantly by virtue of an astigmatic Caussian beam. Cor- respondingly the signal-to-noise ratio (SNR) would also be improved. When the eccentric ratio of waist satisfying w0x : w0y 〉 1, the peak value of signal photon flux could be raised by 2-4 times with typical systematic parameters, while the background photon flux would be depressed. Therefore, the ratio of transverse PPF to background photon flux (i.e., SNR) can be further improved 3-8 times with dimensionless amplitude of relic gravitational wave ht = 10-36.
文摘The present paper is aimed to study the effect of Gaussian laser light on first and second sound waves in superfluid helium theoretically using optoacoustic method. The mechanism applied in this study is electrostriction mechanism. This study considers crystal parts of superfluid helium with a zero absorption coefficient applying electrostriction mechanism. Affecting Gaussian laser light on these crystal parts, a spectrum of cylindrical first and second sound waves and cylindrical slow and rapid waves is obtained. Meanwhile, frequency of waves amplitudes proportionate to time period of laser light is calculated.
基金This work is funded by National Natural Science Foundation of China
文摘In this paper, without recourse to the nonlinear dynamical equations of the waves, the nonlinear random waves are retrieved from the non-Gaussian characteristic of the sea surface elevation distribution. The question of coincidence of the nonlinear wave profile, spectrum and its distributions of maximum (or minimum) values of the sea surface elevation with results derived from some existing nonlinear theories is expounded under the narrow-band spectrum condition. Taking the shoaling sea wave as an example, the nonlinear random wave process and its spectrum in shallow water are retrieved from both the non-Gaussian characteristics of the sea surface elevation distribution in shallow water and the normal sea waves in deep water and compared with the values actually measured. Results show that they can coincide with the actually measured values quite well, thus, this can confirm that the method proposed in this paper is feasible.
文摘In this work, we present the study of electromagnetic wave propagation through a medium with a variable dielectric function using the concept of Gaussian Beam. First of all, we start with wave equation with which we obtain the solution in terms of the electric field and intensity distributions approximate to Gaussian Function, . With this, we analyze the dependency of r on Gaussian beam distribution spread, the distant from the axis at which the intensity of the beam distribution begins to fall at a given estimate of its peak value. The influence of the optimum beam waist wo and the beam spread on the intensity distribution will also be analyzed.
基金supported by National Natural Science Foundation of China(11571190)the Fundamental Research Funds for the Central Universities+3 种基金supported by the China Scholarship Council(201807315008)National Natural Science Foundation of China(11501565)the Youth Project of Humanities and Social Sciences of Ministry of Education(19YJCZH251)supported by National Natural Science Foundation of China(11701084 and 11671084)
文摘In this article, we consider the long time behavior of the solutions to stochastic wave equations driven by a non-Gaussian Lévy process. We shall prove that under some appropriate conditions, the exponential stability of the solutions holds. Finally, we give two examples to illustrate our results.
文摘The wave period probability densities in non-Gaussian mixed sea states are calculated by utilizing a transformed Gaussian process method. The transformation relating the non-Gaussian process and the original Gaussian process is obtained based on the equivalence of the level up-crossing rates of the two processes. A saddle point approximation procedure is applied for calculating the level up-crossing rates in this study. The accuracy and efficiency of the transformed Gaussian process method are validated by comparing the results predicted by using the method with those predicted by the Monte Carlo simulation method.
基金Supported by the Marine Engineering Equipment Scientific Research Project of Ministry of Industry and Information Technology of PRCthe National Science and Technology Major Project of China(Grant No.2016ZX05057020)National Natural Science Foundation of China(Grant No.51809067)
文摘The probability distributions of wave characteristics from three groups of sampled ocean data with different significant wave heights have been analyzed using two transformation functions estimated by non-parametric and parametric methods. The marginal wave characteristic distribution and the joint density of wave properties have been calculated using the two transformations, with the results and accuracy of both transformations presented here. The two transformations deviate slightly between each other for the calculation of the crest and trough height marginal wave distributions, as well as the joint densities of wave amplitude with other wave properties. The transformation methods for the calculation of the wave crest and trough height distributions are shown to provide good agreement with real ocean data. Our work will help in the determination of the most appropriate transformation procedure for the prediction of extreme values.
基金supported by the National Natural Science Foundations of China(Grant Nos 10174025 and 10574051)
文摘In a biased photorefractive crystal, the process of two one-dimensional waves mixing, i.e., the dynamical evolution of both pump beam and signal beam, is traced by numerically solving the coupled-wave equation. Direct simulations show that the propagation and stability of the two beams are completely determined by the system parameters, such as the external bias field, the intensity and the beam waist of the pump beam. By adjusting these parameters, one can control the state of two Gaussian waves mixing. The numerical results are helpful for performing a two-wave mixing experiment.
文摘本文采用CTU(corner transport upwind)+CT(constrained transport)算法求解理想可压缩磁流体动力学(magneto-hydro-dynamic,MHD)方程,仿真研究了不同方向磁场控制下高斯分布轻质气柱界面受平面冲击波扰动后的演化过程,揭示了磁场方向对界面不稳定性的影响机理.仿真结果探讨了有/无磁场作用下流场特性与波系结构的发展,对比分析了磁场方向对气柱的长度、高度、射流宽度和体积压缩率的影响,并结合流场上半区环量、能量分量、速度和磁场力分布,多角度分析了磁场方向对界面不稳定性的影响机理.结果表明,磁压力推动涡量远离界面,降低了涡量在密度界面上的沉积而附着在分裂后的涡层上,从而有效抑制Richtmyer-Meshkov不稳定性对界面的影响;由于磁张力附着在被分离的涡层上,且其作用方向与界面因速度剪切而卷起涡的方向相反,因此抑制了界面因Kelvin-Helmholtz不稳定性而形成涡串.另外,纵向磁场控制下的磁张力反作用于中轴射流方向,同样抑制了Rayleigh-Taylor不稳定性的发展.
文摘不对称接地故障占所有线路故障的90%以上,接地距离保护在应对此类故障方面发挥了不可替代的作用。随着新能源高比例渗透,各种传统单端工频量保护性能显著下降已成为共识。基于故障分量线模和零模波速差的保护判据理论上仅需利用到故障初始行波到达时刻信息,是一种原理简单可靠的单端量快速保护判据,已经在直流电网中成功实践。但在尝试将这类保护应用于交流电网时发现,受波头前陡较缓而难以精确定位波到时刻、依赖高采样率等诸多不利因素影响,存在过大的模糊判别区,除了特长线路外,对绝大部分线路几乎没有应用可行性。波到时刻的精准辨识是一个复杂的非线性问题,利用人工智能的方法进行辨识是一条可行的解决思路,对此,该文提出一种新的单端暂态量主保护判据。首先,分析波达时刻与波形关系,并指出这种关系能够采用机器学习来映射;其次,引入高斯过程回归(Gaussian process regression,GPR),在对初始行波数据进行预处理得到样本集后,输入GPR预测模型进行训练;然后,依据模型评估指标得到最优训练模型以输出高可信性的线-零模波达时差,据此实现了基于行波模量传输时间差的保护判据;最后,在利用PSCAD仿真验证所提保护判据有效性和普适性的基础上,进一步利用现场实测数据对判据进行测试,验证其实用性。该文工作为新能源交流系统下单端暂态量保护的性能提升提供新的解决思路。
文摘以对铁道车辆轴箱振动非高斯特征与分布为对象开展研究。基于列车线路轴箱实测加速度信号,提取由轨道冲击引起的轴箱振动特征非高斯信号。使用多个概率密度函数(Probability Density Function,PDF)模型对实测信号进行拟合,并与实测特征信号的经验分布进行对比,评估各模型对轴箱特征非高斯信号的拟合精度。基于W-H非线性变换模型,建立一种非高斯信号模拟方法。利用模拟信号分析非高斯特征对各模型拟合精度的影响。结果表明:列车在行驶过程中具有非高斯特征,当列车经过轨道焊接接头、道岔与波磨路段时,由于轮轨冲击,非高斯特征明显增大,车轮多边形对信号非高斯特征几乎没有影响;基于W-H模型的非线性变换法,可以在保证模拟信号功率谱与指定功率谱基本一致的情况下,进行不同非高斯特征的信号模拟;高斯混合模型能够对铁道车辆非高斯信号较为准确地拟合;随着模拟非高斯信号峭度与偏度的增大,各模型与经验分布的相对误差也会增大,其中高斯混合模型拟合精度相对较高。