Nanocrystalline monoclinic and cubic Gd 2O 3∶Eu with different Eu 3+ concentration were prepared using glycine-nitrate combustion synthesis. By changing the ratio of glycine to nitrate and proper heat treatment, p...Nanocrystalline monoclinic and cubic Gd 2O 3∶Eu with different Eu 3+ concentration were prepared using glycine-nitrate combustion synthesis. By changing the ratio of glycine to nitrate and proper heat treatment, pure monoclinic and cubic Gd 2O 3∶Eu with particle size less than 40 nm can be easily formed. Under ultraviolet excitation, main emission of Eu 3+ ( 5D 0→ 7F 2) locates at 624 nm in monoclinic Gd 2O 3∶Eu and 611 nm in cubic sample. In excitation spectrum two broad bands corresponding to the host absorption and charge transfer state (CTS) and f-f transitions of Gd 3+ and Eu 3+ were observed and discussed. The quenching concentration of monoclinic and cubic Gd 2O 3∶Eu is 10% and 15%, respectively, both of which are much higher than that of bulk Gd 2O 3∶Eu.展开更多
文摘Nanocrystalline monoclinic and cubic Gd 2O 3∶Eu with different Eu 3+ concentration were prepared using glycine-nitrate combustion synthesis. By changing the ratio of glycine to nitrate and proper heat treatment, pure monoclinic and cubic Gd 2O 3∶Eu with particle size less than 40 nm can be easily formed. Under ultraviolet excitation, main emission of Eu 3+ ( 5D 0→ 7F 2) locates at 624 nm in monoclinic Gd 2O 3∶Eu and 611 nm in cubic sample. In excitation spectrum two broad bands corresponding to the host absorption and charge transfer state (CTS) and f-f transitions of Gd 3+ and Eu 3+ were observed and discussed. The quenching concentration of monoclinic and cubic Gd 2O 3∶Eu is 10% and 15%, respectively, both of which are much higher than that of bulk Gd 2O 3∶Eu.