Al-induced crystallization yields the larger grain and (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate, the (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate are very importan...Al-induced crystallization yields the larger grain and (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate, the (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate are very important for the superior performance electronics and solar cells. We discussed the 50 nm thickness poly-Ge thin film grown on SiO2 substrate by Alinduced crystallization focusing on the lower annealing temperature and the diffusion control interlayer between Ge and Al thin film. The (111)-orientation planes ratio of poly-Ge thin film achieve as high as 90% by merging the lower annealing temperature (325℃) and the GeOx diffusion control interlayer. Moreover, we find the lack of defects on poly-Ge thin film surface and the larger average grains size of poly-Ge thin film over 12 μm were demonstrated by electron backscatter diffraction measurement. Our results turn on the feasibility of fabricating electronic and optical device with poly-Ge thin film grown on SiO2 substrate.展开更多
The films of Ge and Si were grown on the substrate Si (100) by magnetron sputtering at 2.5 Pa Ar pressure.The growth temperature of films was 100℃,250℃,400℃and 550℃.The structure and composition were analysised by...The films of Ge and Si were grown on the substrate Si (100) by magnetron sputtering at 2.5 Pa Ar pressure.The growth temperature of films was 100℃,250℃,400℃and 550℃.The structure and composition were analysised by Raman scattering.The poly-crystal peak and crystal peak of Ge were observed in these films.The results indicate that the single crystal film of Ge was prepared at the substrate temperature of 400℃.The peak of acoustic phonons of Ge was 98 cm^(-1) and that of Si was 170 cm^(-1).展开更多
The short-range order structures of Fe_xGe_(1-x) amorphous thin films,(x=8.7,19.1 and 28.5%)have been studied by means of X-ray absorption spectrum.The nearest neighbors around a Ge or an Fe atom are constituted by tw...The short-range order structures of Fe_xGe_(1-x) amorphous thin films,(x=8.7,19.1 and 28.5%)have been studied by means of X-ray absorption spectrum.The nearest neighbors around a Ge or an Fe atom are constituted by two coordinate sub-shells with a very short dis- tance,In two films with lower Fe content,structural parameters of the nearest neighbors around a Ge atom are very near to that in amorphous germanium,and the positions of Fe at- oms are randomly substitutional.But when x=28.5%,some great changes occur on the short-range order structure of a-Fe_xGe_(1-x) film:its structure deviates from continuous ran- dora network and tends toward dense random packing of atoms.Meanwhile,there is a strong- er interaction between near neighboring Fe-Ge atoms in a-Fe_xGe_(1-x) films.展开更多
用先磁控溅射多层金属膜预置层后硫化的方法成功制备出CZGe_xT_(1-x)S薄膜,并主要研究了Ge含量对于该薄膜光电学性能的影响。分别采用X射线衍射仪、X射线能量色散谱仪、拉曼光谱仪、扫描电子显微镜,紫外-可见-近红外分光光度计和霍尔效...用先磁控溅射多层金属膜预置层后硫化的方法成功制备出CZGe_xT_(1-x)S薄膜,并主要研究了Ge含量对于该薄膜光电学性能的影响。分别采用X射线衍射仪、X射线能量色散谱仪、拉曼光谱仪、扫描电子显微镜,紫外-可见-近红外分光光度计和霍尔效应测量仪对不同Ge含量的CZGe_xT_(1-x)S薄膜的物相结构、元素比例、表面形貌、光学带隙以及电学性能进行了表征与分析。结果表明随着Ge含量的升高,晶粒尺寸不断长大,光学带隙从1.52上升至2.12 e V。同时,Ge替换Sn可减少薄膜内的缺陷,所制备的CZGe S薄膜的载流子浓度与迁移率分别为1.99×1018cm-3与9.712 cm2/Vs。展开更多
文摘Al-induced crystallization yields the larger grain and (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate, the (111)-orientation planes of poly-Ge thin film grown on SiO2 substrate are very important for the superior performance electronics and solar cells. We discussed the 50 nm thickness poly-Ge thin film grown on SiO2 substrate by Alinduced crystallization focusing on the lower annealing temperature and the diffusion control interlayer between Ge and Al thin film. The (111)-orientation planes ratio of poly-Ge thin film achieve as high as 90% by merging the lower annealing temperature (325℃) and the GeOx diffusion control interlayer. Moreover, we find the lack of defects on poly-Ge thin film surface and the larger average grains size of poly-Ge thin film over 12 μm were demonstrated by electron backscatter diffraction measurement. Our results turn on the feasibility of fabricating electronic and optical device with poly-Ge thin film grown on SiO2 substrate.
基金supported by the National Natural Science Foundation of China(No.60272001)the Beijing Natural Science Foundation of China(No.4032010)the Yunnan Natural Province Science Foundation of China(Youth Foundation:No.K1010265)
文摘The films of Ge and Si were grown on the substrate Si (100) by magnetron sputtering at 2.5 Pa Ar pressure.The growth temperature of films was 100℃,250℃,400℃and 550℃.The structure and composition were analysised by Raman scattering.The poly-crystal peak and crystal peak of Ge were observed in these films.The results indicate that the single crystal film of Ge was prepared at the substrate temperature of 400℃.The peak of acoustic phonons of Ge was 98 cm^(-1) and that of Si was 170 cm^(-1).
文摘The short-range order structures of Fe_xGe_(1-x) amorphous thin films,(x=8.7,19.1 and 28.5%)have been studied by means of X-ray absorption spectrum.The nearest neighbors around a Ge or an Fe atom are constituted by two coordinate sub-shells with a very short dis- tance,In two films with lower Fe content,structural parameters of the nearest neighbors around a Ge atom are very near to that in amorphous germanium,and the positions of Fe at- oms are randomly substitutional.But when x=28.5%,some great changes occur on the short-range order structure of a-Fe_xGe_(1-x) film:its structure deviates from continuous ran- dora network and tends toward dense random packing of atoms.Meanwhile,there is a strong- er interaction between near neighboring Fe-Ge atoms in a-Fe_xGe_(1-x) films.
文摘用先磁控溅射多层金属膜预置层后硫化的方法成功制备出CZGe_xT_(1-x)S薄膜,并主要研究了Ge含量对于该薄膜光电学性能的影响。分别采用X射线衍射仪、X射线能量色散谱仪、拉曼光谱仪、扫描电子显微镜,紫外-可见-近红外分光光度计和霍尔效应测量仪对不同Ge含量的CZGe_xT_(1-x)S薄膜的物相结构、元素比例、表面形貌、光学带隙以及电学性能进行了表征与分析。结果表明随着Ge含量的升高,晶粒尺寸不断长大,光学带隙从1.52上升至2.12 e V。同时,Ge替换Sn可减少薄膜内的缺陷,所制备的CZGe S薄膜的载流子浓度与迁移率分别为1.99×1018cm-3与9.712 cm2/Vs。