The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structur...The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structure,thermal and mechanical properties,and crystallization behavior changes were investigated by nuclear magnetic resonance spectrometer,Fourier-transform infrared spectro-photometer,X-ray diffractometer,differential scanning calorimetry and field emission scanning electron microscope measurements.The change of Q^(n)in glass structures reveals the glass network connectivity decreases due to the increasing content of Fe_(2)O_(3)addition,resulting in the increasing of non-bridging number in glass structure.The glass densities slightly rise from 2.644 to 2.681 g/cm^(3),while Vickers’s hardness increases at first,from 6.469 to 6.901 GPa,then slightly drops to 6.745 GPa,with Fe_(2)O_(3)content increase.There is almost no thermal expansion coefficient change from different Fe_(2)O_(3)content.The glass transmittance in visible range gradually decreases with higher Fe_(2)O_(3)content,resulting from the strong absorption of Fe^(2+)and Fe^(3+)ions.The calculated activation energy from thermal analysis results first decreases from 282.70 to 231.18 kJ/mol,and then increases to 244.02 kJ/mol,with the Fe_(2)O_(3)content increasing from 0.10wt%to 1.30wt%.Meanwhile,the maximum Avrami constant of 2.33 means the CAS glasses exhibit two-dimensional crystallization.All of the CAS glass-ceramics samples contain main crystal phase of anorthite,the microstructure appears lamellar and columnar crystals.展开更多
This study proposes an efficient way to utilize all the chemical components of the basic oxygen fttrnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melti...This study proposes an efficient way to utilize all the chemical components of the basic oxygen fttrnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melting BOF slag by reducing it and separating out iron component in it, and the modified BOF slag was then quenched in water to form glasses with different basicities. The glasses were subsequently sintered in the temperature range of 600-1000℃ in air or nitrogen atmosphere for 1 h. The effects of different atmospheres on the physical and mechanical properties of sintered samples were studied by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and by conducting experiment on evaluating the sintering shrinkage, water absorption and bulk density. It is found that the kinetics of the sintering process is significantly affected by sintering atmosphere. In particular, compared with sintering in air atmosphere, sintering in N2 atmosphere promotes the synergistic growth of pyroxene and melilite crystalline phases, which can contribute to better mechanical properties and denser microstructure.展开更多
<div style="text-align:justify;"> The values of refractive index (<i>n</i>) for silicate glasses (silica, soda lime and borosilicate 7059) are decreased from 1.5119 to 1.5111, 1.5086 to 1.5...<div style="text-align:justify;"> The values of refractive index (<i>n</i>) for silicate glasses (silica, soda lime and borosilicate 7059) are decreased from 1.5119 to 1.5111, 1.5086 to 1.5065 and 1.5296 to 1.5281, respectively;and the optical band gap (<i>E<sub>g</sub></i>) is increased from 9.8 to 9.81 eV, 9.845 to 9.88 eV and 9.56 to 9.58 eV, respectively over the temperature range 295 - 473 K using ellipsometer at wavelength 632.8 nm. While <i>n</i> is decreased from 1.5276 to 1.5274, 1.5074 to 1.5070 and from 1.5283 to 1.5281, respectively;and <i>E<sub>g</sub></i> is increased from 9.59 to 9.592 eV, 9.862 to 9.870 eV, and 9.574 to 9.58 eV, respectively over the temperature range 297 - 322 K using Abbe refractometer at wavelength 589.3 nm. The values of oxide ion polarizability [<i>α</i><sub>o2-</sub> <span "="">(<i>n</i>) and</span> <i>α</i><sub>o2-</sub><span "=""></span><span "="">(<i>E<sub>g</sub></i>)] regarding silica, soda lime and borosilicate 7059 glasses are decreased from 1.3427 to 1.3408, 1.6014 to 1.5941, 1.4329 to 1.4193, respectively over the temperature range 295 - 473 K using ellipsometer;and are decreased from 1.3786 to 1.3764, 1.5991 to 1.5969, 1.4297 to 1.4191, respectively over the temperature range 297 - 322 K using Abbe refractometer. Similarly, the values of optical basicity [<i>A</i></span> <span "="">(<i>n</i>) and <i>A</i></span> <span "="">(<i>E<sub>g</sub></i>)] of silica, soda lime, and borosilicate 7059 glasses are decreased from 0.4272 to 0.4245, 0.6271 to 0.6224, 0.5045 to 0.4933, respectively over the temperature range 295 - 473 K using ellipsometer;and are decreased from 0.4586 to 0.4567, 0.6256 to 0.6242, 0.5018 to 0.4930, respectively over the temperature range 297 - 322 K using Abbe refractometer. <b>Further,</b> we have found that for silica, soda lime and borosilicate 7059, the values of electronegativity (<i>ξ<sub>1av</sub></i>)</span><span minion="" pro="" capt","serif";"=""> QUOTE </span><span cambria="" math","serif";font-style:italic;"=""></span><span cambria="" math","serif";"="">ζ</span><span cambria="" math","serif";"="">1av</span><span cambria="" math","serif";"="">)</span><span times="" new="" roman","serif";"=""></span><span minion="" pro="" capt","serif";"=""> </span><span minion="" pro="" capt","serif";"=""></span><span "=""> using <b>Zahid</b><b>numerical</b> <b>model</b> [based on <b><i>α</i><sub>O2-</sub></b></span> <b><span "="">(<i>n</i></span></b><span "="">) and <b><i>A</i></b></span> <b><span "="">(<i>n</i>)]</span></b> are increased from 5.1035 to 5.5504, 4.0393 to 4.830, 4.8143 to 5.0111, respectively over the temperature range 295 - 473 K using ellipsometer;while these values are increased from 5.0657 to 5.2149, 5.0657 to 5.2149, 4.8357 to 5.0111, respectively over the temperature range 297 - 322 K using Abbe refractometer. It is very clear from this research report that both refractive index and optical band gap-based-oxide ion polarizability and optical basicity have the same decreasing trend as the temperature is increased, and this trend indicates that the reported glasses have a very small amount of electronic polarizability. Moreover, this decreasing trend occurs due to the <span "="">decreasing amount of non-bridging oxygen (<b>NBO)</b> which in turn caused a decrease in refractive index within the silicate glass system at higher temperature. <b>Since</b> <b>the</b> <b>calculated</b> <b>values</b> <b>of</b> <b>electronegativity </b>are found to be in the range 4.0393 - 5.5504 for the reported silicate glasses, so all these glasses have an ionic character. Moreover, low values of optical basicity and of oxide ion polarizability suggest that the silicate glasses are not novel glasses (optical functional glasses) for non-linear optical (NLO) devices or for three dimensional displays.</span> </div>展开更多
This study reports the investigation of the influence of adding waste glass on the properties of fired clay specimen. Four different particle sizes (smaller than 100 μm, 300μm, 500μm, and 800 μm) of waste glass we...This study reports the investigation of the influence of adding waste glass on the properties of fired clay specimen. Four different particle sizes (smaller than 100 μm, 300μm, 500μm, and 800 μm) of waste glass were mixed with a clay material at contents of 0%, 2%, 6% and 10% per weight. Specimen samples were fired at 750℃ in an electrical furnace for 6 hours, at a heating rate of 5℃/min. The physical and mechanical properties of terracotta are studied. The chemical analysis revealed that the clays were dominated by kaolinite and montmorillonite with small proportion of mixed layers clay. The fine grained texture (0.002 mm > 25%) and high plasticity (WP > 30%) of the clays were responsible for the moderate and high values of shrinkage upon oven drying and firing. The firing color variation from reddish brown shade was due to the amounts of iron and titanium oxides present in the obtained material. The water absorption was varied between 17.40% and 13.70%, while the linear shrinkage was estimated to be between 0.70% and 1.20% and the flexural strength from 5.30 to 8.10 MPa. These results showed that mixing clay with waste glass at 750℃ is an interesting approach to obtain reddish brown ceramics destined for bricks or roofing tiles.展开更多
Glasses in the system 24.5Na<sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O·24.5CaO·6P</span>...Glasses in the system 24.5Na<sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O·24.5CaO·6P</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-size:12px;font-family:Verdana;">5</span></sub><span style="font-family:Verdana;">·xSrO·(45-x)SiO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> have been</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> studied in the composition region of x = 0 - 15 mol%. The as prepared glasses are transparent and have an amorphous network structure. On the otherhand, heat treated glasses are transformed to opaque white glass ceramic characterized by their highly crystalline network structure. Crystalline apatite (calcium phosphate, Ca</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">(PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, wollastonite (calcium silicate, CaSiO</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">), and strontium calcium phosphate</span></span><span style="font-family:Verdana;"> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Ca</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">Sr(PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">are the main well-formed crystalline species played the major role in material bioactivity. Increasing SrO leads to enhancing material crystallite and enhances the hardness of the host glass matrix. The change of XRD spectra, </span><sup><span style="font-size:12px;font-family:Verdana;">31</span></sup><span style="font-family:Verdana;">P NMR chemical shift and hardness number upon increasing SrO are considered due to modification of the apatit Ca(PO</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> to involve Sr ions inducing Ca</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">Sr (PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> apatite one. Such species play the role in enhancing material properties and hardness.</span></span>展开更多
Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability...Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.展开更多
基金Funded by the Key Research and Development Program of Han Nan province(No.ZDYF2021GXJS027)the Project of Sanya Yazhou Bay Science and Technology City(No.SCKJJYRC-2022-44)the Shenzhen Virtual University Park(SZVUP)Free Exploration Basic Research Project(No.2021Szvup107)。
文摘The calcium aluminosilicate-based glasses(CaO-Al_(2)O_(3)-SiO_(2),CAS)with different Fe_(2)O_(3)content(0.10wt%,0.50wt%,0.90wt%,and 1.30wt%)were prepared by traditional melt-quenching method.The glass network structure,thermal and mechanical properties,and crystallization behavior changes were investigated by nuclear magnetic resonance spectrometer,Fourier-transform infrared spectro-photometer,X-ray diffractometer,differential scanning calorimetry and field emission scanning electron microscope measurements.The change of Q^(n)in glass structures reveals the glass network connectivity decreases due to the increasing content of Fe_(2)O_(3)addition,resulting in the increasing of non-bridging number in glass structure.The glass densities slightly rise from 2.644 to 2.681 g/cm^(3),while Vickers’s hardness increases at first,from 6.469 to 6.901 GPa,then slightly drops to 6.745 GPa,with Fe_(2)O_(3)content increase.There is almost no thermal expansion coefficient change from different Fe_(2)O_(3)content.The glass transmittance in visible range gradually decreases with higher Fe_(2)O_(3)content,resulting from the strong absorption of Fe^(2+)and Fe^(3+)ions.The calculated activation energy from thermal analysis results first decreases from 282.70 to 231.18 kJ/mol,and then increases to 244.02 kJ/mol,with the Fe_(2)O_(3)content increasing from 0.10wt%to 1.30wt%.Meanwhile,the maximum Avrami constant of 2.33 means the CAS glasses exhibit two-dimensional crystallization.All of the CAS glass-ceramics samples contain main crystal phase of anorthite,the microstructure appears lamellar and columnar crystals.
基金financially supported by the State Key Program of National Natural Science Foundation of China(No.51034008)the Fundamental Research Funds for the Central Universities of China(No.2302010FRF-MP-10006B)
文摘This study proposes an efficient way to utilize all the chemical components of the basic oxygen fttrnace (BOF) slag to prepare high value-added glass-ceramics. A molten modified BOF slag was converted from the melting BOF slag by reducing it and separating out iron component in it, and the modified BOF slag was then quenched in water to form glasses with different basicities. The glasses were subsequently sintered in the temperature range of 600-1000℃ in air or nitrogen atmosphere for 1 h. The effects of different atmospheres on the physical and mechanical properties of sintered samples were studied by using differential scanning calorimetry (DSC), X-ray diffraction (XRD) and scanning electron microscopy (SEM) and by conducting experiment on evaluating the sintering shrinkage, water absorption and bulk density. It is found that the kinetics of the sintering process is significantly affected by sintering atmosphere. In particular, compared with sintering in air atmosphere, sintering in N2 atmosphere promotes the synergistic growth of pyroxene and melilite crystalline phases, which can contribute to better mechanical properties and denser microstructure.
文摘<div style="text-align:justify;"> The values of refractive index (<i>n</i>) for silicate glasses (silica, soda lime and borosilicate 7059) are decreased from 1.5119 to 1.5111, 1.5086 to 1.5065 and 1.5296 to 1.5281, respectively;and the optical band gap (<i>E<sub>g</sub></i>) is increased from 9.8 to 9.81 eV, 9.845 to 9.88 eV and 9.56 to 9.58 eV, respectively over the temperature range 295 - 473 K using ellipsometer at wavelength 632.8 nm. While <i>n</i> is decreased from 1.5276 to 1.5274, 1.5074 to 1.5070 and from 1.5283 to 1.5281, respectively;and <i>E<sub>g</sub></i> is increased from 9.59 to 9.592 eV, 9.862 to 9.870 eV, and 9.574 to 9.58 eV, respectively over the temperature range 297 - 322 K using Abbe refractometer at wavelength 589.3 nm. The values of oxide ion polarizability [<i>α</i><sub>o2-</sub> <span "="">(<i>n</i>) and</span> <i>α</i><sub>o2-</sub><span "=""></span><span "="">(<i>E<sub>g</sub></i>)] regarding silica, soda lime and borosilicate 7059 glasses are decreased from 1.3427 to 1.3408, 1.6014 to 1.5941, 1.4329 to 1.4193, respectively over the temperature range 295 - 473 K using ellipsometer;and are decreased from 1.3786 to 1.3764, 1.5991 to 1.5969, 1.4297 to 1.4191, respectively over the temperature range 297 - 322 K using Abbe refractometer. Similarly, the values of optical basicity [<i>A</i></span> <span "="">(<i>n</i>) and <i>A</i></span> <span "="">(<i>E<sub>g</sub></i>)] of silica, soda lime, and borosilicate 7059 glasses are decreased from 0.4272 to 0.4245, 0.6271 to 0.6224, 0.5045 to 0.4933, respectively over the temperature range 295 - 473 K using ellipsometer;and are decreased from 0.4586 to 0.4567, 0.6256 to 0.6242, 0.5018 to 0.4930, respectively over the temperature range 297 - 322 K using Abbe refractometer. <b>Further,</b> we have found that for silica, soda lime and borosilicate 7059, the values of electronegativity (<i>ξ<sub>1av</sub></i>)</span><span minion="" pro="" capt","serif";"=""> QUOTE </span><span cambria="" math","serif";font-style:italic;"=""></span><span cambria="" math","serif";"="">ζ</span><span cambria="" math","serif";"="">1av</span><span cambria="" math","serif";"="">)</span><span times="" new="" roman","serif";"=""></span><span minion="" pro="" capt","serif";"=""> </span><span minion="" pro="" capt","serif";"=""></span><span "=""> using <b>Zahid</b><b>numerical</b> <b>model</b> [based on <b><i>α</i><sub>O2-</sub></b></span> <b><span "="">(<i>n</i></span></b><span "="">) and <b><i>A</i></b></span> <b><span "="">(<i>n</i>)]</span></b> are increased from 5.1035 to 5.5504, 4.0393 to 4.830, 4.8143 to 5.0111, respectively over the temperature range 295 - 473 K using ellipsometer;while these values are increased from 5.0657 to 5.2149, 5.0657 to 5.2149, 4.8357 to 5.0111, respectively over the temperature range 297 - 322 K using Abbe refractometer. It is very clear from this research report that both refractive index and optical band gap-based-oxide ion polarizability and optical basicity have the same decreasing trend as the temperature is increased, and this trend indicates that the reported glasses have a very small amount of electronic polarizability. Moreover, this decreasing trend occurs due to the <span "="">decreasing amount of non-bridging oxygen (<b>NBO)</b> which in turn caused a decrease in refractive index within the silicate glass system at higher temperature. <b>Since</b> <b>the</b> <b>calculated</b> <b>values</b> <b>of</b> <b>electronegativity </b>are found to be in the range 4.0393 - 5.5504 for the reported silicate glasses, so all these glasses have an ionic character. Moreover, low values of optical basicity and of oxide ion polarizability suggest that the silicate glasses are not novel glasses (optical functional glasses) for non-linear optical (NLO) devices or for three dimensional displays.</span> </div>
文摘This study reports the investigation of the influence of adding waste glass on the properties of fired clay specimen. Four different particle sizes (smaller than 100 μm, 300μm, 500μm, and 800 μm) of waste glass were mixed with a clay material at contents of 0%, 2%, 6% and 10% per weight. Specimen samples were fired at 750℃ in an electrical furnace for 6 hours, at a heating rate of 5℃/min. The physical and mechanical properties of terracotta are studied. The chemical analysis revealed that the clays were dominated by kaolinite and montmorillonite with small proportion of mixed layers clay. The fine grained texture (0.002 mm > 25%) and high plasticity (WP > 30%) of the clays were responsible for the moderate and high values of shrinkage upon oven drying and firing. The firing color variation from reddish brown shade was due to the amounts of iron and titanium oxides present in the obtained material. The water absorption was varied between 17.40% and 13.70%, while the linear shrinkage was estimated to be between 0.70% and 1.20% and the flexural strength from 5.30 to 8.10 MPa. These results showed that mixing clay with waste glass at 750℃ is an interesting approach to obtain reddish brown ceramics destined for bricks or roofing tiles.
文摘Glasses in the system 24.5Na<sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O·24.5CaO·6P</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">O</span><sub><span style="font-size:12px;font-family:Verdana;">5</span></sub><span style="font-family:Verdana;">·xSrO·(45-x)SiO</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> have been</span><span style="font-family:;" "=""><span style="font-family:Verdana;"> studied in the composition region of x = 0 - 15 mol%. The as prepared glasses are transparent and have an amorphous network structure. On the otherhand, heat treated glasses are transformed to opaque white glass ceramic characterized by their highly crystalline network structure. Crystalline apatite (calcium phosphate, Ca</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">(PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">, wollastonite (calcium silicate, CaSiO</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">), and strontium calcium phosphate</span></span><span style="font-family:Verdana;"> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">Ca</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">Sr(PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> </span></span><span style="font-family:;" "=""><span style="font-family:Verdana;">are the main well-formed crystalline species played the major role in material bioactivity. Increasing SrO leads to enhancing material crystallite and enhances the hardness of the host glass matrix. The change of XRD spectra, </span><sup><span style="font-size:12px;font-family:Verdana;">31</span></sup><span style="font-family:Verdana;">P NMR chemical shift and hardness number upon increasing SrO are considered due to modification of the apatit Ca(PO</span><sub><span style="font-size:12px;font-family:Verdana;">3</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> to involve Sr ions inducing Ca</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;">Sr (PO</span><sub><span style="font-size:12px;font-family:Verdana;">4</span></sub><span style="font-family:Verdana;">)</span><sub><span style="font-size:12px;font-family:Verdana;">2</span></sub><span style="font-family:Verdana;"> apatite one. Such species play the role in enhancing material properties and hardness.</span></span>
基金supported by the Sichuan Science and Technology Program (Grant Nos.2023NSFSC0004,2023NSFSC0790)the National Natural Science Foundation of China (Grant Nos.51827901,52304033)the Sichuan University Postdoctoral Fund (Grant No.2024SCU12093)。
文摘Deep oil and gas reservoirs are under high-temperature conditions,but traditional coring methods do not consider temperature-preserved measures and ignore the influence of temperature on rock porosity and permeability,resulting in distorted resource assessments.The development of in situ temperaturepreserved coring(ITP-Coring)technology for deep reservoir rock is urgent,and thermal insulation materials are key.Therefore,hollow glass microsphere/epoxy resin thermal insulation materials(HGM/EP materials)were proposed as thermal insulation materials.The materials properties under coupled hightemperature and high-pressure(HTHP)conditions were tested.The results indicated that high pressures led to HGM destruction and that the materials water absorption significantly increased;additionally,increasing temperature accelerated the process.High temperatures directly caused the thermal conductivity of the materials to increase;additionally,the thermal conduction and convection of water caused by high pressures led to an exponential increase in the thermal conductivity.High temperatures weakened the matrix,and high pressures destroyed the HGM,which resulted in a decrease in the tensile mechanical properties of the materials.The materials entered the high elastic state at 150℃,and the mechanical properties were weakened more obviously,while the pressure led to a significant effect when the water absorption was above 10%.Meanwhile,the tensile strength/strain were 13.62 MPa/1.3%and 6.09 MPa/0.86%at 100℃ and 100 MPa,respectively,which meet the application requirements of the self-designed coring device.Finally,K46-f40 and K46-f50 HGM/EP materials were proven to be suitable for ITP-Coring under coupled conditions below 100℃ and 100 MPa.To further improve the materials properties,the interface layer and EP matrix should be optimized.The results can provide references for the optimization and engineering application of materials and thus technical support for deep oil and gas resource development.