The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fat...The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 〈1.6, frictional coefficient μ is drastically decreased as λ. rises; Thereafter it decreases smoothly until λ=4.5. When λ〉4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed.展开更多
Based on the mathematical model of a novel cosine gear drive, a few characteristics, such as the contact ratio, the sliding coefficient, and the contact and bending stresses, of this drive are analyzed. A comparison s...Based on the mathematical model of a novel cosine gear drive, a few characteristics, such as the contact ratio, the sliding coefficient, and the contact and bending stresses, of this drive are analyzed. A comparison study of these characteristics with the involute gear drive is also carried out. The influences of design parameters including the number of teeth and the pressure angle on the contact and bending stresses are studied. The following conclusions are achieved: the contact ratio of the cosine gear drive is about 1.2 to 1.3, which is reduced by about 20% in comparison with that of the involute gear drive. The sliding coefficient of the cosine gear drive is smaller than that of the involute gear drive. The contact and bending stresses of the cosine gear drive are lower than those of the involute gear drive. The contact and bending stresses decrease with the growth of the number of teeth and the pressure angle.展开更多
基金This project is supported by Provincial Natural Science Foundation of Shanxi, China (No. 20041057)Scholarship Council of Shanxi, China (No. 2005-22)
文摘The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 〈1.6, frictional coefficient μ is drastically decreased as λ. rises; Thereafter it decreases smoothly until λ=4.5. When λ〉4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed.
基金National Natural Science Foundation of China(No.50575071)Natural Science Foundation of Hunan Province,China(No.06JJl0008)+1 种基金S&T Programs of Hunan Province,China(No.2007FJ4047)Program for New Century Excellent Talents in University,China.
文摘Based on the mathematical model of a novel cosine gear drive, a few characteristics, such as the contact ratio, the sliding coefficient, and the contact and bending stresses, of this drive are analyzed. A comparison study of these characteristics with the involute gear drive is also carried out. The influences of design parameters including the number of teeth and the pressure angle on the contact and bending stresses are studied. The following conclusions are achieved: the contact ratio of the cosine gear drive is about 1.2 to 1.3, which is reduced by about 20% in comparison with that of the involute gear drive. The sliding coefficient of the cosine gear drive is smaller than that of the involute gear drive. The contact and bending stresses of the cosine gear drive are lower than those of the involute gear drive. The contact and bending stresses decrease with the growth of the number of teeth and the pressure angle.