Gear wear is one of the most common gear failures,which changes the mesh relationship of normal gear.A new mesh relationship caused by gear wear affects meshing excitations,such as mesh stiffness and transmission erro...Gear wear is one of the most common gear failures,which changes the mesh relationship of normal gear.A new mesh relationship caused by gear wear affects meshing excitations,such as mesh stiffness and transmission error,and further increases vibration and noise level.This paper aims to establish the model of mesh relationship and reveal the vibration characteristics of external spur gears with gear wear.A geometric model for a new mesh relationship with gear wear is proposed,which is utilized to evaluate the influence of gear wear on mesh stiffness and unloaded static transmission error(USTE).Based on the mesh stiffness and USTE considering gear wear,a gear dynamic model is established,and the vibration characteristics of gear wear are numerically studied.Comparison with the experimental results verifies the proposed dynamic model based on the new mesh relationship.The numerical and experimental results indicate that gear wear does not change the structure of the spectrum,but it alters the amplitude of the meshing frequencies and their sidebands.Several condition indicators,such as root-mean-square,kurtosis,and first-order meshing frequency amplitude,can be regarded as important bases for judging gear wear state.展开更多
A quasi-static wear model for helical gears is proposed based on finite element method and Archard's formula to investigate the wear characteristics of tooth surface in real operation conditions. The numerical sim...A quasi-static wear model for helical gears is proposed based on finite element method and Archard's formula to investigate the wear characteristics of tooth surface in real operation conditions. The numerical simulation reveals that the wear depth distributes unevenly along the tooth lead and varies along the tooth profile. The surface wear depth claims its minimal value at the pitch circle and reaches its maximal value near the tooth root of the pinion. The effects of misalignment on wear depth are further investigated to provide useful information for gear designers. The numerical simulation reveals that the vertical misalignment is more influential than the parallel misalignment on the gear wear depth. Therefore, to eliminate the negative effects of misalignment, the misalignment should be strictly controlled.展开更多
A numerical simulation model is proposed to predict the wear depth of gears,where Archard's wear equation and a nonlinear dynamic model are combined to establish a wear calculation model under dynamic conditions.T...A numerical simulation model is proposed to predict the wear depth of gears,where Archard's wear equation and a nonlinear dynamic model are combined to establish a wear calculation model under dynamic conditions.The dynamic meshing force,determined by the non-linear dynamic model,and the sliding coefficient are used by Archard's wear equation to calculate the surface wear.Then the dynamic meshing force and sliding coefficient would be recalculated according to the surface wear state.After repeated iterations,the simulation results show that the peak and fluctuation of the meshing force increase first,then decrease,and eventually maintain stability during the process of wear.As for the distribution of wear depth,its fluctuation also increases first and then declines.Finally,the distribution of wear depth becomes V-shaped.Comparing the trends of the two factors,it is clear that the meshing force and wear depth are closely related.Moreover,the wear rate maintains a higher constant value first and then declines to a lower constant value.展开更多
The wear and destruction appearances of hobs are researched. The reasons ofthe wear and destruction of hob are analyzed. And the influence of the change of the hobbing forceand the hobbing temperature on the wear and ...The wear and destruction appearances of hobs are researched. The reasons ofthe wear and destruction of hob are analyzed. And the influence of the change of the hobbing forceand the hobbing temperature on the wear and destruction of hob in gear hobbing is also analyzed. Ingear hobbing, the main wear mechanisms are adhesion and ploughing when cutting the 20CrMnTi gearusing W18Cr4V high-speed steel hob.展开更多
Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely ...Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely diagnosis of gear faults will improve the maintenance of gearboxes operating under sub-optimal conditions,avoid excessive energy consumption and prevent avoidable damages to systems.This study focuses on developing CM for a multi-stage helical gearbox using airborne sound.Based on signal phase alignments,Modulation Signal Bispectrum(MSB)analysis allows random noise and interrupting events in sound signals to be suppressed greatly and obtains nonlinear modulation features in association with gear dynamics.MSB coherence is evaluated for selecting the reliable bi-spectral peaks for indication of gear deterioration.A run-to-failure test of two industrial gearboxes was tested under various loading conditions.Two omnidirectional microphones were fixed near the gearboxes to sense acoustic information during operation.It has been shown that compared against vibration based CM,acoustics can perceive the responses of vibration in a larger areas and contains more comprehensive and stable information related to gear dynamics variation due to wear.Also,the MSB magnitude peaks at the first three harmonic components of gear mesh and rotation components are demonstrated to be sufficient in characterizing the gradual deterioration of gear transmission.Consequently,the combining of MSB peaks with baseline normalization yields more accurate monitoring trends and diagnostics,allowing the gradual deterioration process and gear wear location to be represented more consistently.展开更多
基金This paper was supported by the National Key R&D Program of China(Grant No.2018YFB1702400)the National Natural Science Foundation of China(Grant No.52075414).
文摘Gear wear is one of the most common gear failures,which changes the mesh relationship of normal gear.A new mesh relationship caused by gear wear affects meshing excitations,such as mesh stiffness and transmission error,and further increases vibration and noise level.This paper aims to establish the model of mesh relationship and reveal the vibration characteristics of external spur gears with gear wear.A geometric model for a new mesh relationship with gear wear is proposed,which is utilized to evaluate the influence of gear wear on mesh stiffness and unloaded static transmission error(USTE).Based on the mesh stiffness and USTE considering gear wear,a gear dynamic model is established,and the vibration characteristics of gear wear are numerically studied.Comparison with the experimental results verifies the proposed dynamic model based on the new mesh relationship.The numerical and experimental results indicate that gear wear does not change the structure of the spectrum,but it alters the amplitude of the meshing frequencies and their sidebands.Several condition indicators,such as root-mean-square,kurtosis,and first-order meshing frequency amplitude,can be regarded as important bases for judging gear wear state.
基金Funded by National Natural Science Foundation of China(Nos.51375013,50905122,and 51405003)Anhui Provincial Natural Science Foundation(No.1208085ME64)
文摘A quasi-static wear model for helical gears is proposed based on finite element method and Archard's formula to investigate the wear characteristics of tooth surface in real operation conditions. The numerical simulation reveals that the wear depth distributes unevenly along the tooth lead and varies along the tooth profile. The surface wear depth claims its minimal value at the pitch circle and reaches its maximal value near the tooth root of the pinion. The effects of misalignment on wear depth are further investigated to provide useful information for gear designers. The numerical simulation reveals that the vertical misalignment is more influential than the parallel misalignment on the gear wear depth. Therefore, to eliminate the negative effects of misalignment, the misalignment should be strictly controlled.
基金Supported by the National Natural Science Foundation of China(51475044)
文摘A numerical simulation model is proposed to predict the wear depth of gears,where Archard's wear equation and a nonlinear dynamic model are combined to establish a wear calculation model under dynamic conditions.The dynamic meshing force,determined by the non-linear dynamic model,and the sliding coefficient are used by Archard's wear equation to calculate the surface wear.Then the dynamic meshing force and sliding coefficient would be recalculated according to the surface wear state.After repeated iterations,the simulation results show that the peak and fluctuation of the meshing force increase first,then decrease,and eventually maintain stability during the process of wear.As for the distribution of wear depth,its fluctuation also increases first and then declines.Finally,the distribution of wear depth becomes V-shaped.Comparing the trends of the two factors,it is clear that the meshing force and wear depth are closely related.Moreover,the wear rate maintains a higher constant value first and then declines to a lower constant value.
文摘The wear and destruction appearances of hobs are researched. The reasons ofthe wear and destruction of hob are analyzed. And the influence of the change of the hobbing forceand the hobbing temperature on the wear and destruction of hob in gear hobbing is also analyzed. Ingear hobbing, the main wear mechanisms are adhesion and ploughing when cutting the 20CrMnTi gearusing W18Cr4V high-speed steel hob.
基金Supported by Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Monitoring,Xi’an University of Science and Technology(Grant No.SKL-MEEIM201904)National Natural Science Foundation of China(Grant Nos.51805352,51605380).
文摘Gearbox condition monitoring(CM)plays a significant role in ensuring the operational reliability and efficiency of a wide range of critical industrial systems such as wind turbines and helicopters.Accurate and timely diagnosis of gear faults will improve the maintenance of gearboxes operating under sub-optimal conditions,avoid excessive energy consumption and prevent avoidable damages to systems.This study focuses on developing CM for a multi-stage helical gearbox using airborne sound.Based on signal phase alignments,Modulation Signal Bispectrum(MSB)analysis allows random noise and interrupting events in sound signals to be suppressed greatly and obtains nonlinear modulation features in association with gear dynamics.MSB coherence is evaluated for selecting the reliable bi-spectral peaks for indication of gear deterioration.A run-to-failure test of two industrial gearboxes was tested under various loading conditions.Two omnidirectional microphones were fixed near the gearboxes to sense acoustic information during operation.It has been shown that compared against vibration based CM,acoustics can perceive the responses of vibration in a larger areas and contains more comprehensive and stable information related to gear dynamics variation due to wear.Also,the MSB magnitude peaks at the first three harmonic components of gear mesh and rotation components are demonstrated to be sufficient in characterizing the gradual deterioration of gear transmission.Consequently,the combining of MSB peaks with baseline normalization yields more accurate monitoring trends and diagnostics,allowing the gradual deterioration process and gear wear location to be represented more consistently.