To solve the design problem of transformer composed of non-resonant structure in ultrasonic gear-honing, force coupling conditions for moderately thick annular plate (MTAP) and catenary horn are proposed, and the fr...To solve the design problem of transformer composed of non-resonant structure in ultrasonic gear-honing, force coupling conditions for moderately thick annular plate (MTAP) and catenary horn are proposed, and the frequency equations of the transformer, which consist of an MTAP and a catenary horn, are derived based on Mindlin's theory. The design parameters of the transformer were obtained by solving the frequency equations with the help of MATLAB, and its mode and frequency were deduced by the modal analysis of finite element method (FEM), which are consistent with the theoretical design demands. The transformer design can be extended from system with thin annular plate to that with MTAP as the theoretical method by the simulation analysis of various ratios of the thickness to radius.展开更多
基金Supported by the National Natural Science Foundation of China (50975191)the Innovation and Entrepreneurial Projects for College Students of Taiyuan (110148050)
文摘To solve the design problem of transformer composed of non-resonant structure in ultrasonic gear-honing, force coupling conditions for moderately thick annular plate (MTAP) and catenary horn are proposed, and the frequency equations of the transformer, which consist of an MTAP and a catenary horn, are derived based on Mindlin's theory. The design parameters of the transformer were obtained by solving the frequency equations with the help of MATLAB, and its mode and frequency were deduced by the modal analysis of finite element method (FEM), which are consistent with the theoretical design demands. The transformer design can be extended from system with thin annular plate to that with MTAP as the theoretical method by the simulation analysis of various ratios of the thickness to radius.