The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were inve...The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were investigated to determine the best process conditions. Fe content within electrodeposited Fe-Ni alloys increased with the increase of rotating disk speed and the decrease of temperature and it is considered from the calculated activation energy of iron content that the rate determining step is controlled by mass transfer. Iron content in Fe-Ni electrodeposit varied from 58.33% to 70.45% by increasing current density from 2 to 6 A/drn2. Also, iron content in Fe-Ni-W electrodeposit increased from 59.32% to 70.15%, nickel content decreased from 27.86% to 17.07% and the content of tungsten was almost consistent in the range of 12.78%-12.82% although the current density increases from 1.5 to 5 A/dm^2. For the electroforming of micro gear mold, SU-8 mandrel with 550 μm in diameter and 400 μm in height was prepared by UV-lithography processing. Subsequently, Fe-36Ni and Fe-20Ni-13W alloys micro gear molds were electroformed successfully. Surface hardness values of the electroformed micro molds were measured to be HV490 and HV645, respectively.展开更多
The micropowder injection molding technology was investigated to fabricate the microsized gear wheels on a conventional injection molding machine. The feedstock comprised of carbonyl ferrum powder and a wax-based ther...The micropowder injection molding technology was investigated to fabricate the microsized gear wheels on a conventional injection molding machine. The feedstock comprised of carbonyl ferrum powder and a wax-based thermoplastic binder. Microinjection molding was fulfilled at about 423 K under 100 MPa. The heating system was applied to the die to improve the fluidity of the feedstock and subsequently the cooling system was used to enhance the strength of the green compacts after injection by decreasing the temperature of the die. The gear wheels were realized successfully with their addendum circle diameter ranging from 800 to 200 um and with the center hole as small as 60 um.展开更多
Micro powder injection molding (μPIM) was investigated for possible mass production of micro-components at rela- tively low cost. However, scaling down to such a level produces challenges in injection molding and d...Micro powder injection molding (μPIM) was investigated for possible mass production of micro-components at rela- tively low cost. However, scaling down to such a level produces challenges in injection molding and debinding. Micro gears were fabricated by μPIM from in-house feedstock. The effect of injection speed and injection pressure on the replication of the micro gear cavity was investigated. Solvent debinding and thermal debinding processes were discussed. The results show that micro gears can be successfully fabricated under the injection pressure of 70 MPa and the 60% injection speed. Either too low or too high injection speed can cause incomplete filling of micro gears. The same is the case with too low injection pressure. Too high injection pressure can bring cracks. Solvent debinding of micro gears was performed in a mixture of petroleum ether and ethanol. Subsequently, micro gears were successfully debound by a multistep heating schedule.展开更多
文摘The micro gear mold for powder injection molding was made by electroforming process of Fe-Ni and Fe-Ni-W alloys using UV-lithography process. Kinetics and activation energies in electroplating of both alloys were investigated to determine the best process conditions. Fe content within electrodeposited Fe-Ni alloys increased with the increase of rotating disk speed and the decrease of temperature and it is considered from the calculated activation energy of iron content that the rate determining step is controlled by mass transfer. Iron content in Fe-Ni electrodeposit varied from 58.33% to 70.45% by increasing current density from 2 to 6 A/drn2. Also, iron content in Fe-Ni-W electrodeposit increased from 59.32% to 70.15%, nickel content decreased from 27.86% to 17.07% and the content of tungsten was almost consistent in the range of 12.78%-12.82% although the current density increases from 1.5 to 5 A/dm^2. For the electroforming of micro gear mold, SU-8 mandrel with 550 μm in diameter and 400 μm in height was prepared by UV-lithography processing. Subsequently, Fe-36Ni and Fe-20Ni-13W alloys micro gear molds were electroformed successfully. Surface hardness values of the electroformed micro molds were measured to be HV490 and HV645, respectively.
基金This study was financially supported by the Major State Basic Research Development Program of China (No.2004CB719802)the National High-Tech Research and Development Program of China (No.2006aa03Z113)the Program of the Ministry of Educa-tion of China for Changjiang Scholars and Innovative Research Team in Universities (No.I2P407).
文摘The micropowder injection molding technology was investigated to fabricate the microsized gear wheels on a conventional injection molding machine. The feedstock comprised of carbonyl ferrum powder and a wax-based thermoplastic binder. Microinjection molding was fulfilled at about 423 K under 100 MPa. The heating system was applied to the die to improve the fluidity of the feedstock and subsequently the cooling system was used to enhance the strength of the green compacts after injection by decreasing the temperature of the die. The gear wheels were realized successfully with their addendum circle diameter ranging from 800 to 200 um and with the center hole as small as 60 um.
基金supported by the National Natural Science Foundation of China (No. 51172018)the Fok Ying Tong Education Foundation (No.122016)
文摘Micro powder injection molding (μPIM) was investigated for possible mass production of micro-components at rela- tively low cost. However, scaling down to such a level produces challenges in injection molding and debinding. Micro gears were fabricated by μPIM from in-house feedstock. The effect of injection speed and injection pressure on the replication of the micro gear cavity was investigated. Solvent debinding and thermal debinding processes were discussed. The results show that micro gears can be successfully fabricated under the injection pressure of 70 MPa and the 60% injection speed. Either too low or too high injection speed can cause incomplete filling of micro gears. The same is the case with too low injection pressure. Too high injection pressure can bring cracks. Solvent debinding of micro gears was performed in a mixture of petroleum ether and ethanol. Subsequently, micro gears were successfully debound by a multistep heating schedule.