A gear position decision method used in automated mechanical transmission is introduced. The algorithm of the mechod is composed of a driving environment and driver's intention estimator, the shift schedules suit ...A gear position decision method used in automated mechanical transmission is introduced. The algorithm of the mechod is composed of a driving environment and driver's intention estimator, the shift schedules suit for each typical driving environment and driver's intention situation, and an inference ligic to determine the most proper gear position for the present situation. The estimator identifies the driving environment and driver's intention features which are divided into some typical models. Based on the identified results, the algorithm works out the best gear position. It just simulates the course of driver's making gear position decision when driving a automobile with manual transmission. The test results show that the automated mechanical transmission with the method gives less unnecessary shifting and more proper gear position than common shift schedules.展开更多
Aimed at defects of the gear position decision in an automatic mechanical transmission, a method of synthetic shift schedule of 5 speed gear position is presented, which is based on the fuzzy discernment of the dri...Aimed at defects of the gear position decision in an automatic mechanical transmission, a method of synthetic shift schedule of 5 speed gear position is presented, which is based on the fuzzy discernment of the driver intention and the road characteristics. A contrastive experimental analysis between the synthetic gear position decision method and the traditional gear position decision method is given by analyzing Santana 2000.展开更多
Over the past decade,the electric vehicle industry of China has developed rapidly,reaching one of the highest technological levels in the world.Nevertheless,most electric buses currently serve urban areas,being unsuit...Over the past decade,the electric vehicle industry of China has developed rapidly,reaching one of the highest technological levels in the world.Nevertheless,most electric buses currently serve urban areas,being unsuitable for all-climate operations.In response to the objective of massively adopting electric vehicles for transportation during all the events of the 2022 Beijing Winter Olympics,a dual-motor coaxial propulsion system for all-climate electric vehicles is proposed.The system aims to meet operating requirements such as high speed and adaptability to mountainous roads under severely cold environments.The system provides three operating modes,whose characteristics are analyzed under different conditions.In addition,dual-motor collaborative control strategy with collaborative gearshift and collaborative power distribution is proposed to eliminate power interruption during gearshift process and achieve intelligent power distribution,thus improving the gearshift quality and reducing energy consumption.Finally,gear position calibration for all-climate operation and proper gearshift is introduced.Experimental results demonstrate the advantages of the proposed dual-motor coaxial propulsion system regard-ing gearshift compared with the conventional single-motor automatic transmission.展开更多
文摘A gear position decision method used in automated mechanical transmission is introduced. The algorithm of the mechod is composed of a driving environment and driver's intention estimator, the shift schedules suit for each typical driving environment and driver's intention situation, and an inference ligic to determine the most proper gear position for the present situation. The estimator identifies the driving environment and driver's intention features which are divided into some typical models. Based on the identified results, the algorithm works out the best gear position. It just simulates the course of driver's making gear position decision when driving a automobile with manual transmission. The test results show that the automated mechanical transmission with the method gives less unnecessary shifting and more proper gear position than common shift schedules.
文摘Aimed at defects of the gear position decision in an automatic mechanical transmission, a method of synthetic shift schedule of 5 speed gear position is presented, which is based on the fuzzy discernment of the driver intention and the road characteristics. A contrastive experimental analysis between the synthetic gear position decision method and the traditional gear position decision method is given by analyzing Santana 2000.
基金This work was supported in part by the National Natural Science Foundation of China under Grant 51975049in part by the National Key Technology Research and Development Program of China under Grant 2017YFB0103801.
文摘Over the past decade,the electric vehicle industry of China has developed rapidly,reaching one of the highest technological levels in the world.Nevertheless,most electric buses currently serve urban areas,being unsuitable for all-climate operations.In response to the objective of massively adopting electric vehicles for transportation during all the events of the 2022 Beijing Winter Olympics,a dual-motor coaxial propulsion system for all-climate electric vehicles is proposed.The system aims to meet operating requirements such as high speed and adaptability to mountainous roads under severely cold environments.The system provides three operating modes,whose characteristics are analyzed under different conditions.In addition,dual-motor collaborative control strategy with collaborative gearshift and collaborative power distribution is proposed to eliminate power interruption during gearshift process and achieve intelligent power distribution,thus improving the gearshift quality and reducing energy consumption.Finally,gear position calibration for all-climate operation and proper gearshift is introduced.Experimental results demonstrate the advantages of the proposed dual-motor coaxial propulsion system regard-ing gearshift compared with the conventional single-motor automatic transmission.