期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
EFFECT OF FRICTIONAL FORCE ON GEARING CONTACT FATIGUE STRENGTH
1
作者 QI Xiumei GAO Chuangkuan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期40-43,共4页
The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fat... The model for computing frictional coefficient between two teeth faces at the state of mixed elastohydrodynamic lubrication is established. And then more than 80 sets of numerical calculations and six sets of disc fatigue tests are completed. The results show that when the film thickness ratio λ 〈1.6, frictional coefficient μ is drastically decreased as λ. rises; Thereafter it decreases smoothly until λ=4.5. When λ〉4.5, however, it goes up again with λ, which indicates that the excessive film thickness ratio will deteriorate gearing contact fatigue strength. At the end, the formulae for determining the frictional coefficients are formed. 展开更多
关键词 Involute spur gear Contact fatigue strength Mixed elastohydrodynamic lubrication Frictional coefficient Fatigue tests
下载PDF
Effect of planet pin position errors on the fatigue reliability of large aviation planetary systems
2
作者 Ming LI Zhixuan YANG Liyang XIE 《Frontiers of Mechanical Engineering》 SCIE CSCD 2024年第5期129-152,共24页
Planet pin position errors significantly affect the mechanical behavior of planetary transmissions at both the power-sharing level and the gear tooth meshing level,and its tolerance properties are one of the key desig... Planet pin position errors significantly affect the mechanical behavior of planetary transmissions at both the power-sharing level and the gear tooth meshing level,and its tolerance properties are one of the key design elements that determine the fatigue reliability of large aviation planetary systems.The dangerous stress response of planetary systems with error excitation is analyzed according to the hybrid finite element method,and the weakening mechanism of large-size carrier flexibility to this error excitation is also analyzed.In the simulation and analysis process,the Monte Carlo method was combined to take into account the randomness of planet pin position errors and the coupling mechanism among the error individuals,which provides effective load input information for the fatigue reliability evaluation model of planetary systems.In addition,a simulation test of gear teeth bending fatigue intensity was conducted using a power flow enclosed gear rotational tester,providing the corresponding intensity input information for the reliability model.Finally,under the framework of stress-intensity interference theory,the computational logic of total formula is extended to establish a fatigue reliability evaluation model of planetary systems that can simultaneously consider the failure correlation and load bearing time-sequence properties of potential failure units,and the mathematical mapping of planet pin positional tolerance to planetary systems fatigue reliability was developed based on this model.Accordingly,the upper limit of planet pin positional tolerance zone can be determined at the early design stage according to the specific reliability index requirements,thus maximizing the balance between reliability and economy. 展开更多
关键词 planetary transmission manufacturing error system reliability tooth-root stress hybrid finite element gear test
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部