The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulat...The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulative fatigue criterion and the stress-life equation, the key meshing states of the gear pair were investigated for the contact fatigue and the bending fatigue. Then, the reliability of the proposed model was proved by comparing the calculation result with the simulation result. Further study was performed to analyze the variation of the contact fatigue stress and the bending fatigue stress under different loads. Furthermore, the roles of the driving pinion and the driven gear pair were evaluated in the fatigue life of the straight bevel gear pair and the main fatigue failure mode was determined for the significant gear. The results show that the fatigue failure of the driving pinion is the main fatigue failure for the straight bevel gear pair and the bending fatigue failure is the main fatigue failure for the driving pinion.展开更多
Variable section sweeping with sphere involutes is used to generate the precise model of tooth profile. The contact and bending stress of a straight conical gear set with static bearing contact during a meshing cycle ...Variable section sweeping with sphere involutes is used to generate the precise model of tooth profile. The contact and bending stress of a straight conical gear set with static bearing contact during a meshing cycle is studied using finite element method. Numerical results and comments are presented, revealing that the edge contact causes stress concentration and the gear tooth profile needs further modification.展开更多
In this paper, the effects of profile shift in cylindrical helical gear mechanisms have been investigated with numerical and analytical calculations. The mathematical model for computer simulation of gears has been de...In this paper, the effects of profile shift in cylindrical helical gear mechanisms have been investigated with numerical and analytical calculations. The mathematical model for computer simulation of gears has been designed and the numerical calculations have been carried out. Analytical calculations have been made with an excel program which was designed at different profile shift coefficients for a selected mechanism. Analytical calculations of the same mechanism have been verified by using ANSYS 14.5. The results of analytical and numerical solutions have been compared to profile shift coefficients.展开更多
A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and t...A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%.展开更多
Low shape matching and high stress shielding rates between bone plate and human bone are not conducive to the primary healing of fracture.In this study,taking the fracture site of the lower one‐third of human tibia a...Low shape matching and high stress shielding rates between bone plate and human bone are not conducive to the primary healing of fracture.In this study,taking the fracture site of the lower one‐third of human tibia as an application case,six types of personalised Ti6Al4V tibial plates with grooved surface were designed and evaluated by reverse en-gineering and finite element analysis.The results showed that the grooved design can reduce the stress shielding rate of bone plate and promote the facture healing.Among the six types of bone plates,the‘OUT-MI’bone plate has the lowest stress shielding rate and the most uniform stress distribution.Meanwhile,with the increasing tibial load during the convalescence,the average stress and maximum axial displacement of the tibial fracture surface increased,which can effectively improve the bone regeneration in the tibial fracture area.Moreover,there was no significant difference in four-point bending performance between the‘OUT-MI’bone plate and the‘STR-BE’bone plate,indicating that the mechanical properties of this bone plate were reliable.The results provide a theoretical basis for the design of fracture fixation plates on clinical treatment.展开更多
This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material ...This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material for the specimens consists of a single hole model(25% void/cell,16% void/cell and 10% void/cell)and a four-hole model(25%void/cell).Using a representative volume element(RVE),we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue.Next,the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous and a heterogeneous part(single hole cell)in the contact area.The aim is to analyze the normal and shear stresses of these models and compare them with the results of the corresponding heterogeneous models based on the Direct Numerical Simulation(DNS)method.Finally,by comparing the computational time and%deviations,we draw conclusions about the reliability and effectiveness of the proposed method.展开更多
Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and...Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and the degree of taper were investigated. An analytical model is presented to determine the location of the maximum stress when subjected to a uniformly distributed load or a point load at the free end and was validated using finite element analysis and physical tests. It was found that the maximum stress always occurs at the support when subjected to a uniformly distributed load. When subjected to a point load at the free end and the degree of taper is up to seven, it was found that Miller's equation could be used to determine the location of the maximum stress. However, it is shown that when the degree of taper is greater than seven, Miller's equation does not accurately predict the location and the analytical model should be used. It was also found that the location of the maximum stress was solely dependent on the degree of taper, while a geometric ratio, fl was required to determine the magnitude of the maximum stress. A simple method that predicts the magnitude of the maximum stress is proposed. The average error in the prediction of the magnitude of the maximum stress is found to be less than 1.0%.展开更多
The objective of this work is to analyze the fatigue reliability of complex welded structures composed of multiple web-frame joints, accounting for correlation effects. A three-dimensional finite element model using t...The objective of this work is to analyze the fatigue reliability of complex welded structures composed of multiple web-frame joints, accounting for correlation effects. A three-dimensional finite element model using the 20-node solid elements is generated. A linear elastic finite element analysis was performed, hotspot stresses in a web-frame joint were analyzed and fatigue damage was quantified employing the S-N approach. The statistical descriptors of the fatigue life of a non-correlated web-frame joint containing several critical hotspots were estimated. The fatigue reliability of a web-frame joint wasmodeled as a series system of correlated components using the Ditlevsen bounds. The fatigue reliability of the entire welded structure with multiple web-frame joints, modeled as a parallel system of non-correlated web-frame joints was also calculated.展开更多
The problem of this paper is the high contact stress at the point of contact between the cam and the follower.A pear cam and roller follower mechanism were studied and analyzed for different position of the follower a...The problem of this paper is the high contact stress at the point of contact between the cam and the follower.A pear cam and roller follower mechanism were studied and analyzed for different position of the follower and different contact compression load.The objective of this paper is to study the effect of contact compression load on the contact stress distribution of the cam profile at the point of contact.Four different positions of the follower with the cam was considered(0°,90°,180°,and 270°).The theory of circular plate was applied to derive the analytic solution of the contact stress.The numerical simulation had been done using ANSYS Ver.19.2 package to determine the contact stress,while SolidWorks software was used to investigate follower displacement,velocity,and acceleration.Four distinct values of the compression contact load,such as 3.121 N,6.242 N,9.364 N,and 12.485 N,were used in the numerical simulation.In the experiment setup,a photo-elastic technique was carried out in the field of polarized light to exhibit the stress distribution on the cam specimen.The annealed PSM-4 backalate material was used in the experiment setup.The experimental value of contact stress was checked and verified analytically and numerically at the point of contact.The innovation in this paper the use of spring-damper system which reduce the value of contact stress at the point of contact.The contact stress was maximum 2.136 MPa when the follower located at 270°with the cam,while the contact stress was minimum 1.802 MPa when the follower located at 180°at compression load 12.485 N.展开更多
The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental result...The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental results show that most specimens mainly failed at the 7075 side weld toes even though the base material tensile strength of 7075 is higher than that of 6061.The maximum stress-strain concentration in the two finite element models is located at the 7075 side weld toe,which is basically consistent with the actual fracture location.The weld zone on the 7075 side experiences severe material softening,with a large gradient.However,the Vickers hardness value on the 6061 side negligibly changes and fluctuates around 70 HV.No obvious defects are found on the fatigue fracture,but a large number of secondary cracks appear.Cracks germinate from the weld toe and propagate in the direction of the plate thickness.Weld reinforcement has a serious impact on fatigue life.Fatigue life will decrease exponentially as the weld reinforcement increases under low stress.It is found that the notch stress method can give a better fatigue life prediction for TIG weldments,and the errors of the predicted results are within the range of two factors,while the prediction accuracy decreases under low stress.The equivalent structural stress method can also be used for fatigue life prediction of TIG weldments,but the errors of prediction results are within the range of three factors,and the accuracy decreases under high stress.展开更多
This paper analyses the effect of surface treatment on fretting fatigue specimen by numerical simulations using Finite Element Analysis.The processed specimen refers to artificially adding a cylindrical pit to its con...This paper analyses the effect of surface treatment on fretting fatigue specimen by numerical simulations using Finite Element Analysis.The processed specimen refers to artificially adding a cylindrical pit to its contact surface.Then,the contact radius between the pad and the specimen is controlled by adjusting the radius of the pit.The stress distribution and slip amplitude of the contact surface under different contact geometries are compared.The critical plane approach is used to predict the crack initiation life and to evaluate the effect of processed specimen on its fretting fatigue performance.Both crack initiation life and angle can be predicted by the critical plane approach.Ruiz parameter is used to consider the effect of contact slip.It is shown that the crack initial position is dependent on the tensile stress.For same type of model,three kinds of critical plane parameters and Ruiz method provide very similar position of crack initiation.Moreover,the improved sample is much safer than the flat-specimen.展开更多
根据ST12钢的双点及三点拉剪电阻点焊试件的恒幅疲劳测试结果,分别使用缺口应力法和等效结构应力法进行疲劳寿命预测。在使用缺口应力法时,按试件的实际尺寸和国际焊接学会(International institute of welding, IIW)推荐标准,分别建立...根据ST12钢的双点及三点拉剪电阻点焊试件的恒幅疲劳测试结果,分别使用缺口应力法和等效结构应力法进行疲劳寿命预测。在使用缺口应力法时,按试件的实际尺寸和国际焊接学会(International institute of welding, IIW)推荐标准,分别建立了双点和三点拉剪试件的三维实体有限元模型进行弹性应力分析,从有限元分析结果提取von Mises最大应力变化值,结合IIW推荐标准中的S-N曲线对试件进行疲劳寿命分析预测;在使用结构应力法时则采用梁壳混合单元进行有限元应力分析,并且根据主S-N曲线进行疲劳寿命预测。结果表明,在低周疲劳范围内,缺口应力法和等效结构应力法预测的结果相对于试件的实际寿命有较好地相关性,其中等效结构应力法的结果更接近实验寿命结果。展开更多
基金Project(51105287) supported by the National Natural Science Foundation of ChinaProject(2012BAA08003) supported by the Key Research and Development Project of New Products and New Technologies of Hubei Province, ChinaProject(2011-P05) supported by the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology,China
文摘The aim of this work is to propose a 3D FE model of a theoretical assembling straight bevel gear pair to analyze the contact fatigue on the tooth surface and the bending fatigue in the tooth root. Based on the cumulative fatigue criterion and the stress-life equation, the key meshing states of the gear pair were investigated for the contact fatigue and the bending fatigue. Then, the reliability of the proposed model was proved by comparing the calculation result with the simulation result. Further study was performed to analyze the variation of the contact fatigue stress and the bending fatigue stress under different loads. Furthermore, the roles of the driving pinion and the driven gear pair were evaluated in the fatigue life of the straight bevel gear pair and the main fatigue failure mode was determined for the significant gear. The results show that the fatigue failure of the driving pinion is the main fatigue failure for the straight bevel gear pair and the bending fatigue failure is the main fatigue failure for the driving pinion.
基金Supported by the Key Program of Science and Technology of Hubei Province (2005AA10B19)
文摘Variable section sweeping with sphere involutes is used to generate the precise model of tooth profile. The contact and bending stress of a straight conical gear set with static bearing contact during a meshing cycle is studied using finite element method. Numerical results and comments are presented, revealing that the edge contact causes stress concentration and the gear tooth profile needs further modification.
文摘In this paper, the effects of profile shift in cylindrical helical gear mechanisms have been investigated with numerical and analytical calculations. The mathematical model for computer simulation of gears has been designed and the numerical calculations have been carried out. Analytical calculations have been made with an excel program which was designed at different profile shift coefficients for a selected mechanism. Analytical calculations of the same mechanism have been verified by using ANSYS 14.5. The results of analytical and numerical solutions have been compared to profile shift coefficients.
基金Project(51175168)supported by the National Natural Science Foundation of ChinaProjects(2011GK3148,2012GK3092)supported by Science and Technology Program of Hunan Province,China
文摘A new structure design method of elastic composite cylindrical roller bearing is proposed, in which PTFE is embedded into a hollow cylindrical rolling element, according to the principle of creative combinations and through innovation research on cylindrical roller bearing structure. In order to systematically investigate the inner wall bending stress of the rolling element in elastic composite cylindrical roller bearing, finite element analysis on different elastic composite cylindrical rolling elements was conducted. The results show that, the bending stress of the elastic composite cylindrical rolling increases along with the increase of hollowness with the same filling material. The bending stress of the elastic composite cylindrical rolling element decreases along with the increase of the elasticity modulus of the material under the same physical dimension. Under the same load, on hollow cylindrical rolling element, the maximum bending tensile stress values of the elastic composite cylindrical rolling element after material filling at 0° and 180° are 8.2% and 9.5%, respectively, lower than those of the deep cavity hollow cylindrical rolling element. In addition, the maximum bending-compressive stress value at 90° is decreased by 6.1%.
基金This work was supported by the Key R&D project of Sichuan Province(2018JY0552)National Natural Science Foundation of China(No.51,675,447).
文摘Low shape matching and high stress shielding rates between bone plate and human bone are not conducive to the primary healing of fracture.In this study,taking the fracture site of the lower one‐third of human tibia as an application case,six types of personalised Ti6Al4V tibial plates with grooved surface were designed and evaluated by reverse en-gineering and finite element analysis.The results showed that the grooved design can reduce the stress shielding rate of bone plate and promote the facture healing.Among the six types of bone plates,the‘OUT-MI’bone plate has the lowest stress shielding rate and the most uniform stress distribution.Meanwhile,with the increasing tibial load during the convalescence,the average stress and maximum axial displacement of the tibial fracture surface increased,which can effectively improve the bone regeneration in the tibial fracture area.Moreover,there was no significant difference in four-point bending performance between the‘OUT-MI’bone plate and the‘STR-BE’bone plate,indicating that the mechanical properties of this bone plate were reliable.The results provide a theoretical basis for the design of fracture fixation plates on clinical treatment.
文摘This paper deals with modeling of the phenomenon of fretting fatigue in heterogeneous materials using the multi-scale computational homogenization technique and finite element analysis(FEA).The heterogeneous material for the specimens consists of a single hole model(25% void/cell,16% void/cell and 10% void/cell)and a four-hole model(25%void/cell).Using a representative volume element(RVE),we try to produce the equivalent homogenized properties and work on a homogeneous specimen for the study of fretting fatigue.Next,the fretting fatigue contact problem is performed for 3 new cases of models that consist of a homogeneous and a heterogeneous part(single hole cell)in the contact area.The aim is to analyze the normal and shear stresses of these models and compare them with the results of the corresponding heterogeneous models based on the Direct Numerical Simulation(DNS)method.Finally,by comparing the computational time and%deviations,we draw conclusions about the reliability and effectiveness of the proposed method.
文摘Although commonly used, no design method is available for steel web tapered tee section cantilevers. This paper investigates the bending stresses of such beams. Relationships between the maximum compressive stress and the degree of taper were investigated. An analytical model is presented to determine the location of the maximum stress when subjected to a uniformly distributed load or a point load at the free end and was validated using finite element analysis and physical tests. It was found that the maximum stress always occurs at the support when subjected to a uniformly distributed load. When subjected to a point load at the free end and the degree of taper is up to seven, it was found that Miller's equation could be used to determine the location of the maximum stress. However, it is shown that when the degree of taper is greater than seven, Miller's equation does not accurately predict the location and the analytical model should be used. It was also found that the location of the maximum stress was solely dependent on the degree of taper, while a geometric ratio, fl was required to determine the magnitude of the maximum stress. A simple method that predicts the magnitude of the maximum stress is proposed. The average error in the prediction of the magnitude of the maximum stress is found to be less than 1.0%.
文摘The objective of this work is to analyze the fatigue reliability of complex welded structures composed of multiple web-frame joints, accounting for correlation effects. A three-dimensional finite element model using the 20-node solid elements is generated. A linear elastic finite element analysis was performed, hotspot stresses in a web-frame joint were analyzed and fatigue damage was quantified employing the S-N approach. The statistical descriptors of the fatigue life of a non-correlated web-frame joint containing several critical hotspots were estimated. The fatigue reliability of a web-frame joint wasmodeled as a series system of correlated components using the Ditlevsen bounds. The fatigue reliability of the entire welded structure with multiple web-frame joints, modeled as a parallel system of non-correlated web-frame joints was also calculated.
文摘The problem of this paper is the high contact stress at the point of contact between the cam and the follower.A pear cam and roller follower mechanism were studied and analyzed for different position of the follower and different contact compression load.The objective of this paper is to study the effect of contact compression load on the contact stress distribution of the cam profile at the point of contact.Four different positions of the follower with the cam was considered(0°,90°,180°,and 270°).The theory of circular plate was applied to derive the analytic solution of the contact stress.The numerical simulation had been done using ANSYS Ver.19.2 package to determine the contact stress,while SolidWorks software was used to investigate follower displacement,velocity,and acceleration.Four distinct values of the compression contact load,such as 3.121 N,6.242 N,9.364 N,and 12.485 N,were used in the numerical simulation.In the experiment setup,a photo-elastic technique was carried out in the field of polarized light to exhibit the stress distribution on the cam specimen.The annealed PSM-4 backalate material was used in the experiment setup.The experimental value of contact stress was checked and verified analytically and numerically at the point of contact.The innovation in this paper the use of spring-damper system which reduce the value of contact stress at the point of contact.The contact stress was maximum 2.136 MPa when the follower located at 270°with the cam,while the contact stress was minimum 1.802 MPa when the follower located at 180°at compression load 12.485 N.
基金Partially funded by the National Natural Science Foundation of China(No.51065012)。
文摘The constant amplitude loading fatigue tests were carried out on the 6061/7075 aluminum alloy TIG fillet welded lap specimens in this study,and the weld seam cross-section hardness was measured.The experimental results show that most specimens mainly failed at the 7075 side weld toes even though the base material tensile strength of 7075 is higher than that of 6061.The maximum stress-strain concentration in the two finite element models is located at the 7075 side weld toe,which is basically consistent with the actual fracture location.The weld zone on the 7075 side experiences severe material softening,with a large gradient.However,the Vickers hardness value on the 6061 side negligibly changes and fluctuates around 70 HV.No obvious defects are found on the fatigue fracture,but a large number of secondary cracks appear.Cracks germinate from the weld toe and propagate in the direction of the plate thickness.Weld reinforcement has a serious impact on fatigue life.Fatigue life will decrease exponentially as the weld reinforcement increases under low stress.It is found that the notch stress method can give a better fatigue life prediction for TIG weldments,and the errors of the predicted results are within the range of two factors,while the prediction accuracy decreases under low stress.The equivalent structural stress method can also be used for fatigue life prediction of TIG weldments,but the errors of prediction results are within the range of three factors,and the accuracy decreases under high stress.
基金the National Natural Science Foundation of China(Grant Nos.11372138 and 11572157)the Research Foundation-Flanders(FWO),The Luxembourg National Research Fund(FNR)and Slovenian Research Agency(ARRS)in the framework of the FWO Lead Agency project:G018916N‘Multi-analysis of fretting fatigue using physical and virtual experiments.'The authors would like to acknowledge thefinancial support of the grants from the China Scholarship Council(201806840127)。
文摘This paper analyses the effect of surface treatment on fretting fatigue specimen by numerical simulations using Finite Element Analysis.The processed specimen refers to artificially adding a cylindrical pit to its contact surface.Then,the contact radius between the pad and the specimen is controlled by adjusting the radius of the pit.The stress distribution and slip amplitude of the contact surface under different contact geometries are compared.The critical plane approach is used to predict the crack initiation life and to evaluate the effect of processed specimen on its fretting fatigue performance.Both crack initiation life and angle can be predicted by the critical plane approach.Ruiz parameter is used to consider the effect of contact slip.It is shown that the crack initial position is dependent on the tensile stress.For same type of model,three kinds of critical plane parameters and Ruiz method provide very similar position of crack initiation.Moreover,the improved sample is much safer than the flat-specimen.
文摘根据ST12钢的双点及三点拉剪电阻点焊试件的恒幅疲劳测试结果,分别使用缺口应力法和等效结构应力法进行疲劳寿命预测。在使用缺口应力法时,按试件的实际尺寸和国际焊接学会(International institute of welding, IIW)推荐标准,分别建立了双点和三点拉剪试件的三维实体有限元模型进行弹性应力分析,从有限元分析结果提取von Mises最大应力变化值,结合IIW推荐标准中的S-N曲线对试件进行疲劳寿命分析预测;在使用结构应力法时则采用梁壳混合单元进行有限元应力分析,并且根据主S-N曲线进行疲劳寿命预测。结果表明,在低周疲劳范围内,缺口应力法和等效结构应力法预测的结果相对于试件的实际寿命有较好地相关性,其中等效结构应力法的结果更接近实验寿命结果。