The excellent climbing performance of the gecko is inspiring engineers and researchers for the design of artificial systems aimed at moving on vertical surfaces. Climbing robots could perform many useful tasks such as...The excellent climbing performance of the gecko is inspiring engineers and researchers for the design of artificial systems aimed at moving on vertical surfaces. Climbing robots could perform many useful tasks such as surveillance, inspection, repair, cleaning, and exploration. This paper presents and discusses the design, fabrication, and evaluation of two climbing robots which mimic the gait of the gecko. The first robot is designed considering macro-scale operations on Earth and in space. The second robot, whose motion is controlled using shape memory alloy actuators, is designed to be easily scaled down for micro-scale applications. Proposed bionic systems can climb up 65 degree slopes at a speed of 20 mm·s^-1.展开更多
Locomotion ability, efficiency and reliability are key targets for a good robot. The linkage mechanism for robot locomotion is a discontinuous-constraint metamorphic mechanism. Here we set up equations to present the ...Locomotion ability, efficiency and reliability are key targets for a good robot. The linkage mechanism for robot locomotion is a discontinuous-constraint metamorphic mechanism. Here we set up equations to present the discontinuous-constraint, point out that driving and controlling are the key points to improve the performance and efficiency of the linkage mechanism. Inspired by controlling strategy of the motor nervous system in peripheral vertebrae to the locomotion, we draw off motor control and drive strategy.展开更多
Gecko-like robot(Geckobot),an important branch of bionic robotics,is a robot that simulates gecko's capacity to climb walls and ceilings.The work environment of the traditional wall-climbing robot is greatly limite...Gecko-like robot(Geckobot),an important branch of bionic robotics,is a robot that simulates gecko's capacity to climb walls and ceilings.The work environment of the traditional wall-climbing robot is greatly limited as the moving structure and adsorption principle of the robot have nothing to do with the real gecko.However,the adsorption principle and moving mode of the real gecko can provide a new way to break through the restrictions of the traditional wall-climbing robot.Inspired by the moving mechanism of geckos, this paper develops the Geckobot with motile body.Two types of Geckobots are addressed:one with compliant flat bar as the body,and the other with prismatic joint as the body.The compliant body not only resembles the moving mode of the real gecko body,but also simplifies the Geckobot's structure.The prismatic joint body is used to adapt the change of body length in ground-to-wall transition. The gait planning on the plane and the transition between perpendicular intersectional planes is discussed,with an emphasis on the analysis of the kinematics degree of freedom(DOF) and body posture.Central pattern generator(CPG) neural network is realized in LabVIEW and utilized to control Geckobot's movement.The CPG scheme in Lab VIEW is given,and how CPG is used to control Geckobot to turn or move forward is explored.Simulations are conducted in ADAMS to verify the feasibility of the structure design and gait planning and to acquire some parameters for practical Geckobot development.The experiment with Geckobot-Ⅰand Geckobot-Ⅱon their crawling capacity on the plane and the ground-to-wall transition finds that the robot can complete the crawling movement and ground-to-wall transition,verifying the feasibility of the structure design,gait planning and the CPG motion control.The Geckobot structure design approach,gait planning and the CPG motion control presented would be useful for the research on wall-climbing robots.展开更多
Climbing robots are of potential use for surveillance, inspection and exploration in different environments. In particular, the use of climbing robots for space exploration can allow scientists to explore environments...Climbing robots are of potential use for surveillance, inspection and exploration in different environments. In particular, the use of climbing robots for space exploration can allow scientists to explore environments too challenging for traditional wheeled designs. To adhere to surfaces, biomimetic dry adhesives based on gecko feet have been proposed. These biomimetic dry adhesives work by using multi-scale compliant mechanisms to make intimate contact with different surfaces and adhere by using Van der Waals forces. Fabrication of these adhesives has frequently been challenging however, due to the difficulty in combining macro, micro and nanoscale compliance. We present an all polymer foot design for use with a hexapod climbing robot and a fabrication method to improve reliability and yield. A high strength, low-modulus silicone, TC-5005, is used to form the foot base and microscale fibres in one piece by using a two part mold. A macroscale foot design is produced using a 3D printer to produce a base mold, while lithographic definition of microscale fibres in a thick photoresist forms the 'hairs' of the polymer foot. The adhesion of the silicone fibres by themselves or attached to the macro foot is examined to determine best strategies for placement and removal of feet to maximize adhesion. Results demonstrate the successful integration of micro and macro compliant feet for use in climbing on a variety of surfaces.展开更多
文摘The excellent climbing performance of the gecko is inspiring engineers and researchers for the design of artificial systems aimed at moving on vertical surfaces. Climbing robots could perform many useful tasks such as surveillance, inspection, repair, cleaning, and exploration. This paper presents and discusses the design, fabrication, and evaluation of two climbing robots which mimic the gait of the gecko. The first robot is designed considering macro-scale operations on Earth and in space. The second robot, whose motion is controlled using shape memory alloy actuators, is designed to be easily scaled down for micro-scale applications. Proposed bionic systems can climb up 65 degree slopes at a speed of 20 mm·s^-1.
基金National Natural Science Foundation of China under No. 60535020 , 50575102.
文摘Locomotion ability, efficiency and reliability are key targets for a good robot. The linkage mechanism for robot locomotion is a discontinuous-constraint metamorphic mechanism. Here we set up equations to present the discontinuous-constraint, point out that driving and controlling are the key points to improve the performance and efficiency of the linkage mechanism. Inspired by controlling strategy of the motor nervous system in peripheral vertebrae to the locomotion, we draw off motor control and drive strategy.
基金supported by National Natural Science Foundation of China(Grant No.60535020)National Natural Science Funds for Distinguished Young Scholars of China(Grant No.60525314)
文摘Gecko-like robot(Geckobot),an important branch of bionic robotics,is a robot that simulates gecko's capacity to climb walls and ceilings.The work environment of the traditional wall-climbing robot is greatly limited as the moving structure and adsorption principle of the robot have nothing to do with the real gecko.However,the adsorption principle and moving mode of the real gecko can provide a new way to break through the restrictions of the traditional wall-climbing robot.Inspired by the moving mechanism of geckos, this paper develops the Geckobot with motile body.Two types of Geckobots are addressed:one with compliant flat bar as the body,and the other with prismatic joint as the body.The compliant body not only resembles the moving mode of the real gecko body,but also simplifies the Geckobot's structure.The prismatic joint body is used to adapt the change of body length in ground-to-wall transition. The gait planning on the plane and the transition between perpendicular intersectional planes is discussed,with an emphasis on the analysis of the kinematics degree of freedom(DOF) and body posture.Central pattern generator(CPG) neural network is realized in LabVIEW and utilized to control Geckobot's movement.The CPG scheme in Lab VIEW is given,and how CPG is used to control Geckobot to turn or move forward is explored.Simulations are conducted in ADAMS to verify the feasibility of the structure design and gait planning and to acquire some parameters for practical Geckobot development.The experiment with Geckobot-Ⅰand Geckobot-Ⅱon their crawling capacity on the plane and the ground-to-wall transition finds that the robot can complete the crawling movement and ground-to-wall transition,verifying the feasibility of the structure design,gait planning and the CPG motion control.The Geckobot structure design approach,gait planning and the CPG motion control presented would be useful for the research on wall-climbing robots.
文摘Climbing robots are of potential use for surveillance, inspection and exploration in different environments. In particular, the use of climbing robots for space exploration can allow scientists to explore environments too challenging for traditional wheeled designs. To adhere to surfaces, biomimetic dry adhesives based on gecko feet have been proposed. These biomimetic dry adhesives work by using multi-scale compliant mechanisms to make intimate contact with different surfaces and adhere by using Van der Waals forces. Fabrication of these adhesives has frequently been challenging however, due to the difficulty in combining macro, micro and nanoscale compliance. We present an all polymer foot design for use with a hexapod climbing robot and a fabrication method to improve reliability and yield. A high strength, low-modulus silicone, TC-5005, is used to form the foot base and microscale fibres in one piece by using a two part mold. A macroscale foot design is produced using a 3D printer to produce a base mold, while lithographic definition of microscale fibres in a thick photoresist forms the 'hairs' of the polymer foot. The adhesion of the silicone fibres by themselves or attached to the macro foot is examined to determine best strategies for placement and removal of feet to maximize adhesion. Results demonstrate the successful integration of micro and macro compliant feet for use in climbing on a variety of surfaces.