The purpose of the research in the NJIKI’s fundamental THEOREM-DEFINITION on fractions in the mathematical set ℚand by extension in ℝand ℂand in order to construct some algebraic structures is about the proved EXISTE...The purpose of the research in the NJIKI’s fundamental THEOREM-DEFINITION on fractions in the mathematical set ℚand by extension in ℝand ℂand in order to construct some algebraic structures is about the proved EXISTENCE and the DEFINITION by NJIKI of two INNOVATIVE, IMPORTANT and TEACHABLE operations of addition or additive operations, in ℚ, marked ⊕and +α,β, and taken as VECTORIAL, TRIANGULAR, of THREE or PROPORTIONAL operations and in order to make THEM not be different from the RATIONAL ONE, +, but to bring much more and new information on fractions, and, by extension in ℝand ℂ. And the very NJIKI’s fundamental THEOREM-DEFINITION having many APPLICATIONS in the everyday life of the HUMAN BEINGS and without talking about computer sciences, henceforth being supplied with very interesting new ALGORITHMS. And as for the work done in the research, it will be waiting for its extension to be done after publication and along with the research results concerned.展开更多
Using the unsymmetrical one-range addition theorems introduced by one of the authors with the help of complete orthonormal sets of $/varPsi ^/alpha $-exponential type orbitals ($/alpha = 1,0, - 1, - 2,...)$, this...Using the unsymmetrical one-range addition theorems introduced by one of the authors with the help of complete orthonormal sets of $/varPsi ^/alpha $-exponential type orbitals ($/alpha = 1,0, - 1, - 2,...)$, this paper presents the sets of series expansion relations for multicentre nuclear attraction integrals over Slater-type orbitals arising in Hartree--Fock--Roothaan equations for molecules. The final results are expressed through multicentre charge density expansion coefficients and basic integrals. The convergence of the series is tested by calculating concrete cases for arbitrary values of parameters of orbitals.展开更多
The formulae are established in position,momentum,and four-dimensional spaces for the one-range addition theorems of generalized integer and noninteger μ Coulomb,and exponential type correlated interaction potentials...The formulae are established in position,momentum,and four-dimensional spaces for the one-range addition theorems of generalized integer and noninteger μ Coulomb,and exponential type correlated interaction potentials with hyperbolic cosine(GCTCP and GETCP HC).These formulae are expressed in terms of one-range addition theorems of complete orthonormal sets of Ψα-exponential type orbitals(Ψ α-ETO),α-momentum space orbitals(α-MSO),and zα-hyperspherical harmonics(zα-HSH) introduced.The one-range addition theorems obtained can be useful in the electronic structure calculations of atoms and molecules when the GCTCP and GETCP HC in position,momentum,and four-dimensional spaces are employed.展开更多
Simpler formulas are derived for one-range addition theorems for the integer and noninteger n generalized ex- ponential type orbitals, momentum space orbitals, and hyperspherical harmonics with hyperbolic cosine (GET...Simpler formulas are derived for one-range addition theorems for the integer and noninteger n generalized ex- ponential type orbitals, momentum space orbitals, and hyperspherical harmonics with hyperbolic cosine (GETO HC, GMSO HC, and GHSH HC) in position, momentum and four-dimensional spaces, respectively. The final results are expressed in terms of one-range addition theorems of complete orthonormal sets of Ca-exponential type orbitals, Ca- momentum space orbitals and za-hyperspherical harmonics. We notice that the one-range addition theorems for integer and noninteger n-Slater type orbitals and Gaussian type orbitals in position, momentum and four dimensional spaces are special cases of GETO HC, GMSO HC, and GHSH HC. The theorems presented can be useful in the accurate study of the electronic structure of atomic and molecular systems.展开更多
This is subsequent of , by using the theory of additive fuzzy measure and signed additive fuzzy measure , we prove the Radon_Nikodym Theorem and Lebesgue decomposition Theorem of signed additive fuzzy measure.
We present some convergence and boundedness theorems with respect to filter convergence for lattice group-valued measures. We give a direct proof, based on the sliding hump argument. Furthermore we pose some open prob...We present some convergence and boundedness theorems with respect to filter convergence for lattice group-valued measures. We give a direct proof, based on the sliding hump argument. Furthermore we pose some open problems.展开更多
文摘The purpose of the research in the NJIKI’s fundamental THEOREM-DEFINITION on fractions in the mathematical set ℚand by extension in ℝand ℂand in order to construct some algebraic structures is about the proved EXISTENCE and the DEFINITION by NJIKI of two INNOVATIVE, IMPORTANT and TEACHABLE operations of addition or additive operations, in ℚ, marked ⊕and +α,β, and taken as VECTORIAL, TRIANGULAR, of THREE or PROPORTIONAL operations and in order to make THEM not be different from the RATIONAL ONE, +, but to bring much more and new information on fractions, and, by extension in ℝand ℂ. And the very NJIKI’s fundamental THEOREM-DEFINITION having many APPLICATIONS in the everyday life of the HUMAN BEINGS and without talking about computer sciences, henceforth being supplied with very interesting new ALGORITHMS. And as for the work done in the research, it will be waiting for its extension to be done after publication and along with the research results concerned.
文摘Using the unsymmetrical one-range addition theorems introduced by one of the authors with the help of complete orthonormal sets of $/varPsi ^/alpha $-exponential type orbitals ($/alpha = 1,0, - 1, - 2,...)$, this paper presents the sets of series expansion relations for multicentre nuclear attraction integrals over Slater-type orbitals arising in Hartree--Fock--Roothaan equations for molecules. The final results are expressed through multicentre charge density expansion coefficients and basic integrals. The convergence of the series is tested by calculating concrete cases for arbitrary values of parameters of orbitals.
文摘The formulae are established in position,momentum,and four-dimensional spaces for the one-range addition theorems of generalized integer and noninteger μ Coulomb,and exponential type correlated interaction potentials with hyperbolic cosine(GCTCP and GETCP HC).These formulae are expressed in terms of one-range addition theorems of complete orthonormal sets of Ψα-exponential type orbitals(Ψ α-ETO),α-momentum space orbitals(α-MSO),and zα-hyperspherical harmonics(zα-HSH) introduced.The one-range addition theorems obtained can be useful in the electronic structure calculations of atoms and molecules when the GCTCP and GETCP HC in position,momentum,and four-dimensional spaces are employed.
文摘Simpler formulas are derived for one-range addition theorems for the integer and noninteger n generalized ex- ponential type orbitals, momentum space orbitals, and hyperspherical harmonics with hyperbolic cosine (GETO HC, GMSO HC, and GHSH HC) in position, momentum and four-dimensional spaces, respectively. The final results are expressed in terms of one-range addition theorems of complete orthonormal sets of Ca-exponential type orbitals, Ca- momentum space orbitals and za-hyperspherical harmonics. We notice that the one-range addition theorems for integer and noninteger n-Slater type orbitals and Gaussian type orbitals in position, momentum and four dimensional spaces are special cases of GETO HC, GMSO HC, and GHSH HC. The theorems presented can be useful in the accurate study of the electronic structure of atomic and molecular systems.
文摘This is subsequent of , by using the theory of additive fuzzy measure and signed additive fuzzy measure , we prove the Radon_Nikodym Theorem and Lebesgue decomposition Theorem of signed additive fuzzy measure.
文摘We present some convergence and boundedness theorems with respect to filter convergence for lattice group-valued measures. We give a direct proof, based on the sliding hump argument. Furthermore we pose some open problems.